Кривошипно шатунный механизм назначение и устройство: Устройство КШМ

Содержание

Устройство КШМ

 

 

 

 


 КШМ ВАЗ 2110, 2111, 2112

Основные размеры КШМ ВАЗ 2110, 2111, 2112

показаны на рисунке. Хорошо зарекомендовали

себя двигателя ВАЗ 2110, они имеют много

взаимозаменяемых деталей КШМ с двигателями

ВАЗ 2108, ВАЗ 2109

Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательные движения поршней, воспринимающих давление газов, во вращательное движение коленчатого вала.

Устройство КШМ можно разделить на две группы: подвижные и неподвижные.

Подвижные детали: 

поршень, поршневые кольца, поршневые пальцы и шатуны, коленчатый вал, маховик.

Блок-картер, головка блока цилиндров, гильзы цилиндров. Имеются также фиксирующие и крепежные детали.

Поршневая группа

Поршневая группа включает в себя поршень, поршневые кольца, поршневой палец с фиксирующими деталями. Поршень воспринимает усилие расширяющихся газов при рабочем ходе и передает ею через шатун па кривошип коленчатого вала; осуществляет подготовительные такты; уплотняет над поршневую полость цилиндра как от прорыва газов в картер, так и от излишнего проникновения в нее смазочного материала.

Коренные подшипники

Для коренных подшипников применяются подшипники скольжения, выполненные в виде вкладышей, основой которых является стальная лента толщиной 1,9—2,8 мм для карбюраторных двигателей и 3—6 мм для дизелей. В качестве антифрикционного материала вкладышей используют высокооловянистый алюминиевый сплав для карбюраторных двигателей и трехслойные с рабочим слоем из свинцовой бронзы.

Маховик

Маховик служит для уменьшения неравномерности вращения коленчатого вала, накопления энергии во время рабочего хода поршня, необходимой для вращения вала в течение подготовительных тактов, и вывода деталей КШМ из ВМТ (верхней мертвой точки) и НВТ (нижней мертвой точки).
В многоцилиндровых двигателях маховик является, в основном, накопителем кинетической энергии, необходимой для пуска двигателя и обеспечения плавного трогания автомобиля с места.

Маховики отливают из чугуна в виде лиска с массивным ободом и проводят его динамическую балансировку в сборе с коленчатым валом. На ободе маховика имеется посадочный поясок для напрессовки зубчатого венца для электрического пуска стартером. На цилиндрической поверхности маховика находятся метки или маркировочные штифты и надписи, определяющие момент прохождения ВМТ поршнем первого цилиндра. На торцевую рабочую поверхность опирается фрикционный диск сцепления. Для крепления его кожуха имеются резьбовые отверстия. Маховик центрируют по наружной поверхности фланца с помощью выточки, а положения его относительно коленчатого вала фиксируют установочным штифтом или несимметричным расположением отверстий крепления маховика.

Поршни

Форма и конструкция поршня, включая днище поршня и отверстие под поршневой палец, в значительной степени определяются формой камеры сгорания.


 Устройство шатуна

Шатун необходим для соединения поршня с коленчатым валом и передачи усилия от поршня к коленчатому валу

 

 

Устройство КШМ автомобиля. 

1 — стопорное кольцо, 2 — поршневой палец, 3 — маслосьемные кольца, 4 — компрессионные кольца, 5 — камера сгорания, 6 — днище поршня, 7 — головка поршня:     8 — юбка поршня;  9 —  поршень: 10 — форсунка; 11- шатун; 12  — вкладыш;  13 — шайба , 14 — длинный болт; 15 — короткий болт; 16 — крышка шатуна, 17  —  втулка шатуна;  18 — номер на шатуне; 19 — метка на крышке шатуна; 20 —  шатунный болт.

 

Поршень состоит из головки поршня и направляющей части — юбки поршня. С внутренней стороны имеются приливы — бобышки с гладкими отверстиями под поршневой палец. Для фиксации пальца в отверстиях проточены канавки под стопорные кольца. В зоне выхода отверстий на внешних стенках юбки выполняются местные углубления, где стенки юбки не соприкасаются со стенками цилиндров. Таким образом получаются так называемые холодильники. Для снижения температуры нагрева направляющей поршня в карбюраторных двигателях головку поршня отделяют две поперечные симметричные прорези, которые препятствуют отводу теплоты от днища.

Нагрев, а следовательно, и тепловое расширение поршня по высоте неравномерны. Поэтому поршни выполняют в виде конуса овального сечения. Головка поршня имеет диаметр меньше, чем направляющая. В быстроходных двигателях, особенно при применении коротких шатунов, скорость изменения боковой силы довольно значительна. Это приводит к удару поршня о цилиндр. Чтобы избежать стуков, при перекладке поршневые пальцы смещают на 1,4—1,6 мм в сторону действия максимальной боковой силы, что приводит к более плавной перекладке и снижению уровня шума.

Головка поршня состоит из днища и образующих ее стенок, в которых именно канавки под поршневые кольца. В нижней канавке находятся дренажные отверстия для отвода масла диаметром 2,5—3 мм. Днище головки является одной из стенок камеры сгорания и воспринимает давление газов, омывается открытым пламенем и горячими газами. Для увеличения прочности днища и повышения обшей жесткости головки се стенки выполняются с массивными ребрами. Днища поршней изготовляют плоскими, выпуклыми, вогнутыми и фигурными. Форма выбирается с учетом типа двигателя, камеры сгорания, процесса смесеобразования и технологии изготовления поршней.

Поршневые кольца

Поршневые кольца — элементы уплотнения поршневой группы, обеспечивающие герметичность рабочей полости цилиндра и отвод теплоты от головки поршня.

По назначению кольца подразделяются на:

Компрессионные кольца — препятствующие прорыву газов в картер и отводу теплоты в стенки цилиндра.

Маслосъемные кольца — обеспечивающие равномерное распределение масла по поверхности цилиндра и препятствующие проникновению масла в камеру сгорания.

Изготовляются кольца из специальною легированною чугуна или стали. Разрез кольца, называемый замком, может быть прямым, косым или ступенчатым. По форме и конструкции поршневые кольца дизелей делятся на трапециевидные, с конической поверхностью, и подрезом, маслосъемные, пружинящие с расширителем; поршневые кольца карбюраторных двигателей — на бочкообразные, с конической поверхностью со скосом, с подрезом; маслосьемные — с дренажными отверстиями и узкой перемычкой, составные предсталяют собой два стальных лиска (осевой и радиальный расширители).

Составное маслосъемное поршневое кольцо (а) и его установка в головке поршня двигателя: 1 — дискообразное кольцо; 2 — осевой расширитель; 3 — радиальный расширитель; 4— замок кольца; 5 — компрессионные кольца; 6 — поршень; 7 — отверстие в канавке маслосъемного кольца.


Для повышения износостойкости первого компрессионного кольца, работающего и условиях высоких температур  и граничного трения, его поверхность покрывают пористым хромом. Устанавливая на поршень поршневые кольца, необходимо следить за тем, чтобы замки соседних колец были смещены один относительно другого на некоторый угол (90 —180 градусов).

Поршневой палец обеспечивает шарнирное соединение шатуна с поршнем. Поршневые пальцы изготовляют из малоуглеродистых сталей. Рабочую поверхность тщательно обрабатывают и шлифуют. Для уменьшения массы палец выполняют пустотелым.

Установка поршневого пальца


Шатун шарнирно соединяет поршень с кривошипом коленчатого вала. Он воспринимает от поршня и передает коленчатому валу усилие давления газов при рабочем ходе, обеспечивает перемещение поршней при совершении вспомогательных тактов. Шатун работает в условиях значительных нагрузок действующих по его продольной оси.

Шатун состоит из верхней головки, в которой имеется гладкое отверстие под подшипник поршневого пальца; стержня двутаврового сечения и нижней головки с разъемным отверстием для крепления с шатунной шейкой коленчатого вата. Крышка нижней головки крепится с помощью шатунных болтов. Шатун изготавливают методом гарячей штамповки из высокочественной стали. Для более подробного изучения создан раздел «Устройство шатуна«.

Устройство шатуна

Для смазывания подшипника поршневого пальца (бронзовая втулка) в верхней головке шатуна имеются отверстие или прорези. В двигателях марки «ЯМЗ» подшипник смазывается под давлением, для чего в стержне шатуна имеется масляный канал. Плоскость разъема нижней головки шатуна может располагаться под различными углами к продольной оси шатуна. Наибольшее распространение получили шатуны с разъемом перпендикулярным к оси стержня, В двигателях марки «ЯМЗ» имеющим больший диаметр,  чем диаметр цилиндра, pазмер нижней головки шатуна, выполнен косой разъем нижней головки, так как при прямом разъеме монтаж шатуна через цилиндр при сборке двигателя становится невозможным. Для подвода масла к стенкам цилиндра на нижней головке шатуна имеется отверстие. С целью уменьшения трения и изнашивания в нижние головки шатунов устанавливают подшипники скольжения, состоящие из двух взаимозаменяемых вкладышей (верхнего и нижнею).

Вкладыши изготовляются из стальной профилированной ленты толщиной 1,3—1,6 мм для карбюраторных двигателей и 2—3,6 мм для дизелей. На ленту наносят антифрикционный сплав толщиной 0,25—-0,4 мм — высокооловянистый алюминиевый сплав (для карбюраторных двигателей). На дизелях марки «КамАЗ» применяют трехслойные вкладыши, залитые свинцовистой бронзой. Шатунные вкладыши устанавливаются в нижнюю головку шатуна с натягом 0,03—0,04 мм. От осевого смешения и провертывания вкладыши удерживаются в своих гнездах усиками, входящими в пазы, которые при сборке шатуна и крышки должны располагаться на одной стороне шатуна.

Устройство двигателя автомобиля не сложно для обучения, главное изучать материал последовательно и систематизированно.

СОДЕРЖАНИЕ:

1. Устройство КШМ двигателя

1.1 Подвижные детали КШМ

1.2 Неподвижные детали КШМ

2. Неисправности КШМ двигателя

2.1 Звуки неисправностей двигателя (стуки двигателя)

2.2 Признаки и причины неисправностей двигателя автомобиля

3. Капитальный ремонт двигателя автомобиля

 

Кривошипно-шатунный механизм: устройство, детали, принцип работы

Практически в любом поршневом двигателе, установленном в автомобиле, тракторе, мотоблоке, используется кривошипно- шатунный механизм. Стоят они и компрессорах для производства сжатого воздуха. Энергию расширяющихся газов, продуктов сгорания очередной порции рабочей смеси, кривошипный механизм преобразует во вращение рабочего вала, передаваемое на колеса, гусеницы или привод мотокосы. В компрессоре происходит обратное явление: энергия вращения приводного вала преобразуется в потенциальную энергию сжимаемого в рабочей камере воздуха или другого газа.

Устройство механизма

Первые кривошипные устройства были изобретены в античном мире. На древнеримских лесопилках вращательное движение водяного колеса, вращаемого речным течением, преобразовывалось в возвратно-поступательной движение полотна пилы. В античности большого распространения такие устройства не получили по следующим причинам:

  • деревянные части быстро изнашивались и требовали частого ремонта или замены;
  • рабский труд обходился дешевле высоких для того времени технологий.

В упрощенном виде кривошипно-шатунный механизм использовался с XVI века в деревенских прялках. Движение педали преобразовывалось во вращение прядильного колеса и других частей приспособления.

Разработанные в XVIII веке паровые машины тоже использовали кривошипный механизм. Он располагался на ведущем колесе паровоза. Давление пара на поршневое дно преобразовывалось в возвратно- поступательное движение штока, соединенного с шатуном, шарнирно закрепленном на ведущем колесе. Шатун придавал колесу вращение. Такое устройство кривошипно-шатунного механизма было основой механического транспорта до первой трети XX века.

Паровозная схема была улучшена в крейцкопфных моторах. Поршень в них жестко прикреплен к крейцкопфу- штоку, скользящему в направляющих взад и вперед. На конце штока закреплен шарнир, к нему присоединен шатун. Такая схема увеличивает размах рабочих движений, позволяет даже сделать вторую камеру с другой стороны от поршня. Таким образом каждое движение штока сопровождается рабочим тактом. Такая кинематика и динамика кривошипно-шатунного механизма позволяет при тех же габаритах удвоить мощность. Крейцкопфы применяются в крупных стационарных и корабельных дизельных установках.

Элементы, составляющие кривошипно-шатунный механизм, разбивают на следующие типы:

  • Подвижные.
  • Неподвижные.

К первым относятся:

  • поршень;
  • кольца;
  • пальцы;
  • шатун;
  • маховик;
  • коленвал;
  • подшипники скольжения коленчатого вала.

К неподвижным деталям кривошипно-шатунного механизма относят:

  • блок цилиндров;
  • гильза;
  • головка блока;
  • кронштейны;
  • картер;
  • другие второстепенные элементы.

Поршни, пальцы и кольца объединяют в поршневую группу.

Каждый элемент, равно как и подробная кинематическая схема и принцип работы заслуживают более подробного рассмотрения

Блок цилиндров

Это одна из самых сложных по конфигурации деталь двигателя. На схематическом объемном чертеже видно, что внутри он пронизан двумя непересекающимися системами каналов для подачи масла к точкам смазки и циркуляции охлаждающей жидкости. Он отливается из чугуна или сплавов легких металлов, содержит в себе места для запрессовки гильз цилиндра, кронштейны для подшипников коленвала, пространство для маховика, систем смазки и охлаждения. К блоку подходят патрубки системы подачи топливной смеси и удаления отработанных газов.

Снизу к блоку через герметичную прокладку крепится масляный картер- резервуар для смазки. В этом картере и происходит основная работа кривошипно- шатунного механизма, сокращенно КШМ.

Гильза должна выдерживать высокое давление в цилиндре. Его создают газы, образовавшиеся после сгорания топливной смеси. Поэтому и то место блока, куда гильзы запрессованы, должно выдерживать большие механические и термические нагрузки.

Гильзы обычно изготавливают из прочных сортов стали, реже — из чугуна. В ходе работы двигателя они изнашиваются при капитальном ремонте двигателя могут быть заменены. Различают две основных схемы их размещения:

  • сухая, внешняя сторона гильзы отдает тепло материалу блока цилиндров;
  • влажная, гильза омывается снаружи охлаждающей жидкостью.

Второй вариант позволяет развивать большую мощность и переносить пиковые нагрузки.

Поршни

Деталь представляет из себя стальную или алюминиевую отливку в виде перевернутого стакана. Скользя по стенкам цилиндра, он принимает на себя давление сгоревшей топливной смеси и превращает его в линейное движение. Далее через кривошипный узел она превращается во вращение коленчатого вала, а затем передается на сцепление и коробку передач и через кардан к колесам. Силы, действующие в кривошипно-шатунном механизме, приводят транспортное средство или стационарный механизм в движение.

Деталь выполняет следующие функции:

  • на такте впуска, двигаясь вниз (или в направлении от коленчатого вала, если цилиндр расположен не вертикально) на, он увеличивает объем рабочей камеры и создает в ней разрежение, затягивающее и равномерно распределяющее по объему очередную порцию рабочей смеси;
  • на такте сжатия поршневая группа движется вверх, сжимая рабочую смесь до необходимой степени;
  • далее идет рабочий такт, деталь под давлением идет вниз, передавая импульс вращения коленчатому валу;
  • на такте выпуска он снова идет вверх, вытесняя отработанные газы в выхлопную систему.

На всех тактах, кроме рабочего, поршневая группа движется за счет коленчатого вала, забирая часть энергии его вращения. На одноцилиндровых двигателях для аккумуляции такой энергии служим массивный маховик, на многоцилиндровые такты цилиндров сдвинуты во времени.

Конструктивно изделие подразделяется на такие части, как:

  • днище, воспринимающее давление газов;
  • уплотнение с канавками для поршневых колец;
  • юбка, в которой закреплен палец.

Палец служит осью, на которой закреплено верхнее плечо шатуна.

Поршневые кольца

Назначение и устройство поршневых колец обуславливается их ролью в работе кривошипных- устройств. Кольца выполняются плоскими, они имеют разрез шириной в несколько десятых частей миллиметра. Их вставляют в проточенные для них кольцевые углубления на уплотнении.

Кольца выполняют следующие функции:

  • Уплотняют зазор между гильзой и стенками поршня.
  • Обеспечивают направление движения поршня.
  • Охлаждают. Касаясь гильзы, компрессионные кольца отводят избыточное тепло от поршня, оберегая его от перегрева.
  • Изолируют рабочую камеру от смазочных материалов в картере. С одной стороны, кольца задерживают капельки масла, разбрызгиваемые в картере ударами противовесов щек коленвала, с другой, пропускают небольшое его количество для смазки стенок цилиндра. За это отвечает нижнее, маслосъемное кольцо.

Смазывать необходимо и соединение поршня с шатуном.

Отсутствие смазки в течение нескольких минут приводит детали цилиндра в негодность. Трущиеся части перегреваются и начинают разрушаться либо заклиниваются. Ремонт в этом случае предстоит сложный и дорогостоящий.

Поршневые пальцы

Осуществляют кинематическую связь поршня и шатуна. Изделие закреплено в поршневой юбке и служит осью подшипника скольжения. Детали выдерживают высокие динамические нагрузки во время рабочего хода, а также смены такта и обращения направления движения. Вытачивают их из высоколегированных термостойких сплавов.

Различают следующие типы конструкции пальцев:

  • Фиксированные. Неподвижно крепятся в юбке, вращается только обойма верхней части шатуна.
  • Плавающие. Могут проворачиваться в своих креплениях.

Плавающая конструкция применяется в современных моторах, она снижает удельные нагрузки на компоненты кривошипно- шатунной  группы и увеличивает их ресурс.

Шатун

Эта ответственный элемент кривошипно-шатунного механизма двигателя выполнен разборным, для того, чтобы можно было менять вкладыши подшипников в его обоймах. Подшипники скольжения используются на низкооборотных двигателях, на высокооборотных устанавливают более дорогие подшипники качения.

Внешним видом шатун напоминает накидной ключ. Для повышения прочности и снижения массы поперечное сечение сделано в виде двутавровой балки.

При работе деталь испытывает попеременно нагрузки продольного сжатия и растяжения. Для изготовления используют отливки из легированной или высокоуглеродистой стали.

Коленчатый вал

Преобразование осуществляет с помощь.

Из деталей кривошипно-шатунной группы коленчатый вал имеет наиболее сложную пространственную форму. Несколько коленчатых сочленений выносят оси вращения его сегментов в сторону от основной продольной оси. К этим вынесенным осям крепятся нижние обоймы шатунов. Физический смысл конструкции точно такой же, как и при закреплении оси шатуна на краю маховика. В коленвала «лишняя», неиспользуемая часть маховика изымается и заменяется противовесом. Это позволяет существенно сократить массу и габариты изделия, повысить максимально доступные обороты.

Основные части, из которых состоит коленвал, следующие:

  • Шейки. Служат для крепления вала в кронштейнах картера и шатунов на валу. Первые называют коренными, вторые — шатунными.
  • Щеки. Образуют колена, давшие узлу свое название. Вращаясь вокруг продольной оси и толкаемые шатунами, преобразуют энергию продольного движения поршневой группы во вращательную энергию коленвала.
  • Фронтальная выходная часть. На ней размещен шкив, от которого цепным или ременным приводом крутятся валы вспомогательных систем мотора- охлаждения, смазки, распределительного механизма, генератора.
  • Основная выходная часть. Передает энергию трансмиссии и далее — колесам.

Тыльная часть щек, выступающая за ось вращения коленвала, служит противовесом для основной их части и шатунных шеек. Это позволяет динамически уравновесит вращающуюся с большой скоростью конструкцию, избежав разрушительных вибраций во время работы.

Для изготовления коленвалов используются отливки из легких высокопрочных чугунов либо горячие штамповки (поковки) из упрочненных сортов стали.

Картер двигателя

Служит конструктивной основой всего двигателя, к нему крепятся все остальные детали. От него отходят внешние кронштейны, на них весь агрегат прикреплен к кузову. К картеру крепится трансмиссия, передающая от двигателя к колесам крутящий момент. В современных конструкциях картер исполняется единой деталью с блоком цилиндров. В его пространственных рамках и происходит основная работа узлов, механизмов и деталей мотора. Снизу к картеру крепится поддон для хранения масла для смазки подвижных частей.

Принцип работы кривошипно-шатунного механизма

Принцип работы кривошипно — шатунного механизма не изменился за последние три столетия.

Во время рабочего такта воспламенившаяся в конце такта сжатия рабочая смесь быстро сгорает, продукты сгорания расширяются и толкают поршень вниз. Он толкает шатун, тот упирается в нижнюю ось, разнесенную в пространстве с основной продольной осью.  В результате под действием приложенных по касательной сил коленвал проворачивается на четверть оборота в четырехтактных двигателях и на пол-оборота в двухтактных. таким образом продольное движение поршня преобразуется во вращение вала.

Расчет кривошипно-шатунного механизма требует отличных знаний прикладной механики, кинематики, сопротивления материалов. Его поручают самым опытным инженерам.

Неисправности, возникающие при работе КШМ и их причины

Сбои в работе могут случиться в разных элементах кривошипно-шатунной группы. Сложность конструкции и сочетания параметров шатунных механизмов двигателей заставляет особенно внимательно относить к их расчету, изготовлению и эксплуатации.

Наиболее часто к неполадкам приводит несоблюдение режимов работы и технического обслуживания мотора. Некачественная смазка, засорение каналов подачи масла, несвоевременная замена или пополнение запаса масла в картере до установленного уровня- все эти причины приводят к повышенному трению, перегреву деталей, появлению на их рабочих поверхностях задиров, потертостей и царапин. При каждой замене масла обязательно следует менять масляный фильтр. В соответствии с регламентом обслуживания также нужно менять топливные и воздушные фильтры.

Нарушение работы системы охлаждения также вызывает термические деформации деталей вплоть до их заклинивания или разрушения. Особенно чувствительны к качеству смазки дизельные моторы.

Неполадки в системе зажигания также могут привести к появлению нагара на поршне и п\его кольцах Закоксовывание колец вызывает снижение компрессии и повреждение стенок цилиндра.

Бывает также, что причиной поломки становятся некачественные либо поддельные детали или материалы, примененные при техническом обслуживании. Лучше приобретать их у официальных дилеров или в проверенных магазинах, заботящихся о своей репутации.

Перечень неисправностей КШМ

Наиболее распространенными поломками механизма являются:

  • износ и разрушение шатунных и коренных шеек коленвала;
  • стачивание, выкрашивание или плавление вкладышей подшипников скольжения;
  • загрязнение нагаром сгорания поршневых колец;
  • перегрев и поломка колец;
  • скопление нагара на поршневом днище приводит к его перегреву и возможному разрушению;
  • длительная эксплуатация двигателя с детонационными эффектами вызывает прогорание днища поршня.

Сочетание этих неисправностей со сбоем в системе смазки может вызвать перекос поршней в цилиндрах и заклинивание двигателя. Устранение всех этих поломок связано демонтажом двигателя и его частичной или полной разборкой.

Ремонт занимает много времени и обходится недешево, поэтому лучше выявлять сбои в работе на ранних стадиях и своевременно устранять неполадки.

Признаки наличия неисправностей в работе КШМ

Для своевременного выявления сбоев и начинающих развиваться негативных процессов в кривошипно- шатунной группе полезно знать из внешних признаков:

  • Стуки в двигателе, непривычные звуки при разгоне.  Звенящие звуки часто бывают вызваны детонационными явлениями. Неполное сгорание топлива во время рабочего такта и взрывообразное его сгорание на такте выпуска приводят к скоплению нагара на кольцах и днище поршня, к ухудшению условий их охлаждения и разрушению. Необходимо залить качественное топливо и проверит параметры работы системы зажигания на стенде.
  • Глухие стуки говорят об износе шеек коленвала. В этом случае следует прекратить эксплуатацию, отшлифовать шейки и заменить вкладыши на более толстые из ремонтного комплекта.
  • «Поющий» на высокой звонко ноте звук указывает на возможное начало плавления вкладышей или на нехватку масла при повышении оборотов. Также нужно срочно ехать в сервис.
  • Сизые клубы дыма из выхлопного патрубка свидетельствуют о избытке масла в рабочей камере. Следует проверить состояние колец и при необходимости заменить их.
  • Падение мощности также может вызываться закоксовыванием колец и снижением компрессии.

При обнаружении этих тревожных симптомов не стоит откладывать визит в сервисный центр. Заклиненный двигатель обойдется намного дороже, и по деньгам, и по затратам времени.

Обслуживание КШМ

Чтобы не повредить детали КШМ, нужно соблюдать все требования изготовителя по периодическому обслуживанию и регулярному осмотру автомобиля.

Уровень масла, особенно на не новом автомобиле, следует проверять ежедневно перед выездом. Занимает это меньше минуты, а может сэкономить месяцы ожидания при серьезной поломке.

Топливо нужно заливать только с проверенных АЗС известных брендов, не прельщаясь двухрублевой разницей в цене.

При обнаружении перечисленных выше тревожных симптомов нужно незамедлительно ехать на СТО.

Не стоит самостоятельно, по роликам из Сети, пытаться растачивать цилиндры, снимать нагар с колец и выполнять другие сложные ремонтные работы. Если у вас нет многолетнего опыта такой работы- лучше обратиться к профессионалам. Самостоятельная установка шатунного механизма после ремонта- весьма сложная операция.

Применять различные патентованные средства «для преобразования нагара на стенках цилиндров», «для раскоксовывания» разумно лишь тогда, когда вы точно уверены и в диагнозе, и в лекарстве.

Назначение и общее устройство кривошипно-шатунного механизма Камаз 4310


Категория:

   Устройство эксплуатация камаз 4310


Публикация:

   Назначение и общее устройство кривошипно-шатунного механизма Камаз 4310


Читать далее:

Назначение и общее устройство кривошипно-шатунного механизма Камаз 4310

Кривошипно-шатунный механизм (К.ШМ) является основным механизмом поршневого двигателя. Он предназначен для осуществления рабочего процесса внутри цилиндровой полости и преобразования возвратно-поступательного движения поршней во вращательное движение коленчатого вала. Двигатели КамАЗ имеют центральный кривошипно-шатунный механизм, выполненный по У-образной схеме с последовательным расположением шатунов на шатунных шейках коленчатого вала.

Детали кривошипно-шатунного механизма работают в чрезвычайно тяжелых условиях. Как показывает анализ работы двигателей, до 40% всех отказов приходится на КШМ. Кроме того, отказы деталей этого механизма часто приводят к аварийным последствиям, выз-ывая повреждение сопряженных узлов, а восстановление их работоспособности сопровождается значительными трудозатратами, так как требует практически полной разборки и сборки двигателя.

Кривошипно-шатунный механизм состоит из неподвижных и подвижных деталей.

Рекламные предложения на основе ваших интересов:

К неподвижным деталям относятся блок цилиндров, гильзы цилиндров, головки цилиндров, передняя крышка (корпус гидромуфты), картер маховика, поддон картера, детали крепления и элементы уплотнения.

К подвижным деталям относятся восемь поршневых групп (поршень, поршневые кольца, поршневой палец), шатуны, коленчатый вал и маховик.


Рекламные предложения:

Читать далее: Неподвижные детали кривошипно-шатунного механизма Камаз 4310

Категория: —
Устройство эксплуатация камаз 4310

Главная → Справочник → Статьи → Форум

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм осуществляет основной рабочий процесс двигателя – преобразование энергии движения поршней во вращение коленчатого вала, которое в дальнейшем передается на ведущую ось автомобиля.

Двигатель

Назначение кривошипно-шатунного механизма

В блоках цилиндров рядных двигателей поршни перемещаются вверх и вниз, а в оппозитных, к примеру, в противоположные стороны в горизонтальной плоскости, но общая суть их движения не меняется – на языке физики оно называется возвратно-поступательным. Чтобы это движение преобразовалось во вращение колес, в двигателях внутреннего сгорания, вне зависимости от типа, используется особый механизм, построенный на применении кривошипа – то есть особого рычага, части коленчатого вала.

Кривошипно-шатунный механизм есть в двигателе внутреннего сгорания и швейной машинке Зингера

История создания кривошипно-шатунного механизма

Кривошипно-шатунный механизм был придуман задолго до появления первых автомобилей. Он использовался еще в восемнадцатом веке в конструкции штамповочных прессов, швейных машинок,  приводов колесной пары паровозов и многих других механизмов.

Вопрос преобразования энергии движущихся поршней во вращение колес стоял с самого момента появления двигателя внутреннего сгорания. По аналогии с существовавшими уже паровыми двигателями, инженеры, занимавшиеся его конструированием, решили применить для этих целей кривошипно-шатунный механизм. В современных поршневых двигателях модернизировано очень многое, но КШМ по-прежнему актуален и остается единственно возможной конструкцией. 

Устройство кривошипно – шатунного механизма двигателя

Практически все механические части двигателя представляют из себя одновременно части кривошипно-шатунного механизма. К нему относятся блок цилиндров, картер и головка блока цилиндров, шатунно-поршневая группа, коленчатый вал и маховик.

Коленчатый вал 

Коленчатый вал представляет собой деталь со сложной конфигурацией. Помимо опорных шеек, позволяющих ему крепко держаться в блоке, коленчатый вал имеет столько кривошипов или, как их называют, колен, сколько цилиндров конструктивно заложено в блоке двигателя.

Кривошип 

К каждому колену или кривошипу посредством сложной системы деталей крепится шатун поршня.

Кривошип отстоит от оси коренных шеек на определенный радиус, называемый радиусом кривошипа. От этого параметра зависит ход поршня.

В зависимости от конструкции блока цилиндров двигателя одно колено может служить основанием для крепления одного или более шатунов. Если двигатель рядный, к одному кривошипу крепится один шатун, если V-образный, то два шатуна. Этим, кстати, объясняется относительная компактность блоков цилиндров V-образных двигателей.

Колено и кривошип — одно и то же. Колено дало название коленвалу, а кривошип — кривошипно-шатунному механизму

Шатун

Шатун представляет собой деталь двутаврового сечения, имеющую верхнюю и нижнюю «головки».  В верхней «головке» шатуна помещается поршневой палец,  посредством которого шатун соединяется с поршнем. Нижняя «головка» шатуна выполнена разъемной,  для того, чтобы ее можно было соединить  с шатунной шейкой коленчатого вала с помощью шатунных крышек.

Поршень

Поршень представляет собой цилиндрическую деталь, выполненную из алюминиевого сплава, с отверстием под поршневой палец для соединения с шатуном. Поршень надевается на шатун, как стакан, донышком вверх, и закрепляется при помощи пальца.

 

Принцип действия кривошипно-шатунного механизма

Поступившая в цилиндр двигателя топливная смесь, при подходе поршня к верхней мертвой точке (крайнее верхнее положение поршня в цилиндре), поджигается посредством свечи зажигания или самовоспламеняется от давления, и расширяющиеся под  газы, образовавшиеся после сгорания смеси, начинают толкать поршень по стенкам цилиндра к нижней мертвой точке.

Так как поршень соединен с шатуном, он передает на него свое усилие и, подходя к нижней мертвой точке (крайнее нижнее положение поршня в цилиндре), шатун, за счет полного оборота кривошипа, к которому он прикреплен, приводит во вращательное движение коленчатый вал.

Вал, в свою очередь, через элементы трансмиссии передает крутящий момент на ведущие колеса автомобиля, приводя его в движение.

Кривошипно-шатунный механизм



Кривошипно-шатунный механизм

Детали и узлы кшм являются основой поршневого двигателя внутреннего
сгорания, обеспечивают восприятие давления газов, возникающего в цилиндре в
результате сгорания рабочей смеси и преобразования 
возвратно-поступательного движения поршня во вращательное движение коленчатого
вала. Все детали КШМ подразделяются на подвижные и неподвижные. К неподвижным
деталям относятся блок цилиндров, картер (или блок-картер, если блок цилиндров и
картер являются одной деталью) и головка блока цилиндров, к подвижным поршни и
детали поршневой группы, шатуны, коленчатый вал, маховик. Наиболее
распространенные компоновочные схемы КШМ автомобильных поршневых двигателей
представлены на рис 1.

Самый простой двигатель – рядный (их обычно обозначают R2,
R3, R4 и т.д., в зависимости
от числа цилиндров). С увеличением числа цилиндров двигатель становится длиннее,
что усложняет компоновку автомобиля. На современных переднеприводных автомобилях
рядный шестицилиндровый двигатель устанавливается только на
VOLVO S80 с очень компактной коробкой перемены передач.

 

 


Рис. 1.  Основные компоновочные схемы КШМ

 

Для уменьшения длины двигателя и увеличения жесткости основных деталей и узлов
конструкции применяют V-образные схемы КШМ (обозначают
V2,V4,V6,
V8 и т.д.) в которых блоки цилиндров располагаются под
углом 90…120 градусов. V-образные двигатели с углом
«развала» между блоками 180называют оппозитными. Такие
двигатели конструктивно сложнее рядных, так как имеют как минимум вдвое больше
головок цилиндров, коллекторов и  валов механизма газораспределения, привод
которого также более сложный. Оппозитные двигатели получаются  еще и намного
шире рядных. Поэтому они в основном используются для транспортных средств, в
которых необходимо иметь двигатель небольшой высоты, например в автобусах с
расположением силового агрегата под полом салона.

При выборе типа двигателя, одновременно с компоновочными и экономическими
соображениями, приходится решать проблему уравновешенности двигателя. Вибрация
двигателя на опорах неизбежна из-за чередования вспышек в цилиндрах,
обусловленных порядком работы и вызывающих изменение величины крутящего момента
на коленчатом валу. Действующие на детали КШМ силы инерции также влияют на
уравновешенность двигателя. Степень уравновешенности некоторых двигателей
показана в таблице 1. Знаком «+» показаны уравновешенные силы и моменты сил, «-»
— свободные (неуравновешенные). Для уравновешивания сил и моментов сил применяют
противовесы на коленчатом валу, располагают определенным образом шейки вала,
применяют специальные валы, вращающиеся синхронно с коленчатым валом двигателя.

Таблица 1: Степень
уравновешенности двигателей    

 

1

R2

R3

R4

R6

V2

V4

V6

B6

B8

Силы
инерции 1-го порядка

+

+

+

+

+

+

+

Силы
инерции 2-го порядка

+

+

+

+

+

Центробежные силы**

+

+

+

+

+

+

+

+

+

+

Моменты
сил инерции 1-го порядка

+

+

+

+

+

+

Моменты
сил инерции 2-го порядка

+

+

+

+

+

+

+

Моменты
центробежных сил

+

+

+

+

+

+

+

 

  

Кривошипно-шатунный механизм, назначение и детали и узлы КШМ

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм воспринимает давление расширяющихся газов при такте сгорание — расширение и преобразовывает прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала.

Кривошипно-шатунный механизм состоит из:

• блока цилиндров с картером;

• головки цилиндров;

• поршней с кольцами;

• поршневых пальцев;

• шатунов;

• коленчатого вала;

• маховика;

• поддона картера.

Блок цилиндров отливают заодно с картером. И он является базисной деталью двигателя, к которой крепятся кривошипно-шатунный, газораспределительный механизмы и все навесные приборы и агрегаты двигателя (рис. 4).

Рис. 4. Головка и блок цилиндров двигателя

Изготовляют его из серого чугуна, реже из алюминиевого сплава силумина. В отливке блок-картера выполнены полости для смывания охлаждающей жидкостью стенок гильз цилиндров. Сами же гильзы могут быть вставными, изготовленными из жаростойкой стали или же отлитыми заодно с чугунным блок-картером. Блоки из алюминиевых сплавов изготовляются только со вставными гильзами. Внутренняя поверхность гильз служит направляющей для перемещения поршня, она тщательно шлифуется и называется зеркалом. Уплотнение гильз осуществляется с помощью колец из специальной резины или меди. Вверху уплотнение гильз достигается за счет прокладки головки цилиндров. Увеличение срока службы гильз цилиндров достигается в результате запрессовки в верхнюю их часть, как работающую в наиболее тяжелых условиях (высокая температура и агрессивная газовая среда), коротких тонкостенных вставок из кислотоупорного чугуна. Этим достигается снижение износа верхней части гильзы в четыре раза.

Снизу картер двигателя закрыт поддоном, выштампованным из листовой стали, уплотненным прокладкой из картона или пробковой крошки. Поддон используется в качестве резервуара для моторного масла и служит защитой картера от попадания грязи и пыли.

Головка цилиндров закрывает цилиндры сверху. На ней размещены детали газораспределительного механизма, камеры сгорания, выполнены отверстия под свечи или форсунки, запрессованы направляющие втулки и седла клапанов. Для охлаждения камер сгорания в головке вокруг них выполнена специальная полость.

Для создания герметичности плоскость разъема между головками и блоком цилиндров уплотнена стальными или сталеасбестовыми прокладками, а крепление осуществляется шпильками с гайками.

Головки отлиты из алюминиевого сплава (AЛ-4) или чугуна. Сверху они накрыты клапанной крышкой из штампованной стали или алюминиевого сплава, уплотненной пробковой или маслобензостойкой резиновой прокладкой.

Двигатели с однорядным расположением цилиндров имеют одну головку цилиндров, двигатели с V-образным расположением имеют отдельные головки на каждый ряд цилиндров, либо на группу из нескольких цилиндров, либо отдельную головку на каждый цилиндр.

Поршень воспринимает давление расширяющихся газов при рабочем такте и передает его через поршневой палец и шатун на коленчатый вал двигателя. Представляет собой перевернутый днищем вверх цилиндрический стакан, отлитый из высококремнистого алюминиевого сплава.

Поршень имеет днище, уплотняющую и направляющую (юбку) части (рис. 5). Днище и уплотняющая часть составляют головку поршня, в которой проточены канавки для поршневых колец. Днище поршня с головкой цилиндров формируют камеру сгорания и работают в крайне тяжелых температурных условиях из-за недостаточного охлаждения. Для некоторых моделей двигателей поршни изготовляют со вставкой из специального жаропрочного чугуна для верхнего компрессионного кольца и выполняют в днище поршня тороидальные камеры сгорания с выемками для предотвращения касания днища поршня с клапанами. Ниже головки выполнена юбка, направляющая движение поршня. В юбке поршня имеются бобышки с отверстиями под поршневой палец.

Конструкция поршня должна исключать его заклинивание при тепловом расширении работающего двигателя. С этой целью головку поршня выполняют меньшего диаметра, чем юбку, которую изготовляют овальной формы с большой осью, перпендикулярной оси поршневого кольца. В некоторых поршнях юбка имеет разрез, предотвращающий заклинивание поршня при работе прогретого двигателя. На юбку поршня может наноситься коллоидно-графитовое покрытие для предохранения от задиров зеркала цилиндра и улучшения приработки.

Поршневые кольца устанавливаются двух типов: компрессионные и маслосъемные. Компрессионные кольца служат для уплотнения поршня в гильзе цилиндра и предот вращения прорыва газов из камеры сгорания в картер двигателя. Маслосъемные кольца служат для снятия излишков масла с зеркала цилиндра и не допускают его попадания в камеру сгорания.

Поршневые кольца изготовляются из белого чугуна, а маслосъемные могут быть выполнены из стали. Для повышения износостойкости верхнее компрессионное кольцо подвергается пористому хромированию, а остальные для ускорения приработки покрыты слоем олова или молибдена.

Кольца имеют разрез (замок) для установки на поршень. Количество компрессионных колец, устанавливаемых на поршнях, может быть неодинаково для различных моделей двигателей, обычно два или три кольца. Маслосъемные кольца устанавливаются по одному на поршень. Они состоят из четырех элементов: из двух стальных разрезных колец, одного стального гофрированного осевого и одного радиального расширителей (рис. 5).

Поршневые кольца могут иметь различную геометрическую форму. Компрессионные кольца могут быть прямоугольного сечения, иметь коническую форму и выточку на верхней внутренней кромке кольца. Маслосъемные кольца также имеют различную форму: коническую, скребковую и пластинчатую с расширителями. Кроме того, маслосъемные кольца имеют сквозные прорези для прохода масла через канавку внутрь поршня. Канавка поршня для маслосъемного кольца имеет один или два ряда отверстий для отвода масла.

Рис. 5. Детали поршневой группы двигателя

Поршневой палец плавающего типа обеспечивает шарнирное соединение поршня с шатуном и удерживается от осевого смещения в бобышках поршня стопорными кольцами. Палец имеет форму пустотелого цилиндра, изготовлен из хромоникелевой стали. Поверхность его упрочнена цементацией и закалена токами высокой частоты.

Шатун служит для соединения поршня с коленчатым валом двигателя и для передачи при рабочем ходе давления расширяющихся газов от поршня к коленчатому валу. Во время вспомогательных тактов от коленчатого вала через шатун приводится в действие поршень.

Шатун (рис. 6) состоит из верхней неразъемной головки с запрессованной втулкой из оловянистой бронзы и разъемной нижней головки, в которую вставлены тонкостенные стальные вкладыши, залитые слоем антифрикционного сплава. Головки шатуна соединяются стержнем двутаврового сечения. Нижняя разъемная головка шатуна с помощью крышки закрепляется на шатунной шейке коленчатого вала. Шатун и его крышки изготовлены из легированной или углеродистой стали.

Крышка обрабатывается в сборе с шатуном. Номер на шатуне и метка на его крышке всегда должны быть обращены в одну сторону. При сборке V-образных двигателей необходимо помнить, что шатуны правого ряда цилиндров обращены номерами назад по ходу автомобиля, а левого ряда — вперед и совпадают с надписью на поршне

«Вперед».

Нижняя головка шатуна и крышка соединяются болтами и шпильками со специальными стопорными шайбами. Гайки имеют резьбу несколько отличную от резьбы шпилек и болтов, что обеспечивает самостопорение резьбового соединения. Вкладыши нижней головки шатуна выполнены из стальной или сталеалюминиевой ленты, покрытой антифрикционным слоем. В качестве покрытия используют свинцовые сплавы, свинцовистую бронзу или алюминиевый сплав АМО-1-20. От проворачивания в нижней головке шатуна вкладыши удерживаются выступами (усиками), которые фиксируются в канавках, выфрезерованных в шатуне и его крышке. Коленчатый вал воспринимает усилия, передаваемые шатунами от поршней, и преобразует их в крутящий момент, который через маховик передается агрегатам трансмиссии автомобиля.

Рис. 6. Шатун

Коленчатый вал (рис. 7) состоит из шатунных и коренных шеек, соединенных щеками с противовесами, фланца для крепления маховика. На переднем кольце коленчатого вала (носок) имеются шпоночные пазы для закрепления распределительной шестерни и шкива привода вентилятора, а также отверстие для установки храповика пусковой рукоятки. Шатунная шейка со щеками образует кривошип (или колено) вала. Расположение кривошипов обеспечивает равномерное чередование рабочих ходов поршня в различных цилиндрах.

Коленчатые валы штампуют из стали или отливают из высокопрочного магниевого чугуна. Шейки выполняются полыми для уменьшения центробежных сил и используются как грязеуловители для моторного масла. Шейки коленчатого вала шлифуют и полируют, поверхность закаливается токами высокой частоты. Щеки вала имеют сверления для подвода масла к трущимся поверхностям коренных и шатунных шеек коленчатого вала.

Коленчатые валы, у которых каждая шатунная шейка имеет с двух сторон коренные шейки, называются полноопорными.

Продольное перемещение коленчатого вала при его тепловом расширении ограничивается упорными сталебаббитовыми шайбами, которые устанавливаются по обе стороны первого коренного подшипника или четырьмя сталеалюминиевыми полукольцами, установленными в вытачке задней коренной опоры вала.

Рис. 7. Коленчатый вал\

Для предотвращения утечки масла на концах коленчатого вала устанавливаются маслоотражатели и сальники. Предусматриваются также маслосгонные спиральные канавки и маслоотражательный буртик.

Вкладыши коренных подшипников имеют такую же конструкцию, как и вкладыши шатунных подшипников. У двигателей с блоками, выполненными из алюминиевых сплавов, крышки коренных подшипников выполняют из чугуна для предотвращения заклинивания коленчатого вала при низких температурах.

Крышки коренных подшипников растачивают совместно с блоком цилиндров и при сборке двигателя их устанавливают только на свои места, не меняя положения.

Маховик служит для уменьшения неравномерности работы двигателя, вывода поршней из мертвых точек, облегчения пуска двигателя и способствует плавному троганию автомобиля с места.

Маховик представляет собой массивный диск, отлитый из чугуна, на обод которого напрессован стальной зубчатый венец, предназначенный для вращения коленчатого вала стартером при пуске двигателя. Для исключения нарушения установочной балансировки маховик крепится болтами к фланцу коленчатого вала на несимметрично расположенных

штифтах.

Поддон картера является резервуаром для моторного масла и предохраняет картер двигателя от попадания пыли и грязи.

Поддон штампуют из листовой стали или отливают из алюминиевых сплавов. Для герметизации плоскости разъема между картером и поддоном устанавливают пробковые

или маслобензостойкие прокладки. Поддон крепится болтами или шпильками.

Крепление двигателя к раме или несущему кузову должно быть надежным и амортизировать толчки, возникающие при работе двигателя и движении автомобиля. В качестве опор применяют специальные кронштейны (лапы), под которые устанавливают одну или две резиновые подушки или пружины. Двигатели могут быть закреплены на раме в трех или четырех точках. Часто для фиксации двигателя используются тяги или скобы.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Для чего служит кривошипно-шатунный механизм?

2. Из каких основных деталей состоит кривошипно-шатунный механизм?

3. Назвать основные детали поршневой группы и описать их устройство.

4. Как устроены шатун и коленчатый вал ?

5. Каким образом осуществляется крепление двигателя на автомобиле?

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм (КШМ) воспринимает давление газов при рабочем ходе и преобразует возвратно-поступательное движение поршня во вращательное движение коленвала. КШМ состоит из блока цилиндров с головкой, поршней с кольцами, поршневых пальцев, шатунов, коленчатого вала, маховика и поддона картера.

Содержание статьи

Устройство КШМ

Блок цилиндров является основной деталью двигателя, к которой крепятся все механизмы и детали. Блоки цилиндров отливают из чугуна или алюминиевого сплава. В той же отливке выполнены картер и стенки рубашки охлаждения, окружающие цилиндры двигателя. В блок цилиндров устанавливают вставные гильзы. Гильзы бывают «мокрые» (охлаждаемые жидкостью) и «сухие». На многих современных двигателях применяются безгильзовые блоки. Внутренняя поверхность гильзы (цилиндра) служит направляющей для поршней.

Блок цилиндров сверху закрывается одной или двумя (в V-образных двигателях) головками цилиндров из алюминиевого сплава. В головке блока цилиндров (ГБЦ) размещены камеры сгорания, в которых имеются резьбовые отверстия для свечей зажигания (в дизелях – для свечей накала). В головках ДВС с непосредственным впрыском также имеется отверстие для форсунок. Для охлаждения камер сгорания вокруг них выполнена специальная рубашка. На головке цилиндров закреплены детали газораспределительного механизма. В ГБЦ выполнены впускные и выпускные каналы и установлены вставные седла и направляющие втулки клапанов. Для создания герметичности между блоком и ГБЦ устанавливается прокладка, а крепление головки к блоку цилиндров осуществлено шпильками с гайками. Головка цилиндров сверху закрывается крышкой. Между ними устанавливается маслоустойчивая прокладка.

Блок цилиндровБлок цилиндров в разрезеГоловка блока цилиндровДетали КШМ

Поршень воспринимает давление газов при рабочем такте и передает его через поршневой палец и шатун на коленчатый вал. Поршень представляет собой перевернутый цилиндрический стакан, отлитый из алюминиевого сплава. В верхней части поршня расположена головка с канавками, в которые вставляются поршневые кольца. Ниже головки выполнена юбка, направляющая движение поршня. В юбке поршня имеются приливы-бобышки с отверстиями для поршневого пальца.

При работе двигателя поршень, нагреваясь, расширится и, если между ним и стенкой цилиндра не будет необходимого зазора, заклинится в цилиндре. Если же зазор будет слишком большим, то часть отработанных газов будет прорываться в картер. Это приведет к падению давления в цилиндре и уменьшению мощности двигателя. Поэтому головку поршня выполняют меньшего диаметра, чем юбку, а саму юбку в поперечном сечении изготавливают не цилиндрической формы, а в виде эллипса с большей осью в плоскости, перпендикулярной поршневому пальцу. На юбке поршня имеется разрез. Из-за овальной формы и разреза юбки предотвращается заклинивание поршня при работе прогретого двигателя. Общее устройство поршней принципиально одинаково, но их конструкции могут отличаться в зависимости от особенностей конкретного двигателя.

Поршневые кольца подразделяются на компрессионные и маслосъемные. Компрессионные кольца уплотняют поршень в цилиндре и служат для уменьшения прорыва газов из цилиндров в картер, а маслосъемные снимают излишки масла со стенок цилиндров и предотвращают проникновение масла в камеру сгорания. Кольца, изготовленные из чугуна или стали, имеют разрез (замок). Количество колец в разных двигателях может быть разным.

Поршневой палец шарнирно соединяет поршень с верхней головкой шатуна. Палец изготовлен в виде пустотелого цилиндрического стержня, наружная поверхность которого закалена токами высокой частоты. Осевое перемещение пальца в бобышках поршня ограничивается разрезными стальными кольцами.

Шатун служит для соединения коленчатого вала с поршнем. Шатун состоит из стального стержня двутаврового сечения, верхней неразъемной и нижней разъемной головок. В верхней головке установлен поршневой палец, а нижняя головка крепится на шатунной шейке коленчатого вала. Для уменьшения трения в верхнюю головку шатуна запрессовывается втулка, а в нижнюю, состоящую из двух частей, устанавливаются тонкостенные вкладыши. Обе части нижней головки скрепляются двумя болтами с гайками. К головкам шатуна при работе двигателя подводится масло. В V-образных двигателях на одной шатунной шейке коленвала крепится два шатуна.

Коленчатый вал изготавливается из стали или из высокопрочного чугуна. Он состоит из шатунных и коренных шлифованных шеек, щек и противовесов. Задняя часть вала выполнена в виде фланца, к которому болтами крепится маховик. На переднем конце коленчатого вала закрепляется ременной шкив и звездочка привода распредвала. В шкив может быть интегрирован гаситель крутильных колебаний. Наиболее распространенная конструкция представляет собой два металлических кольца, соединенных через упругую среду (резина-эластомер, вязкое масло).

Количество и расположение шатунных шеек зависят от числа цилиндров и их расположения. Шатунные шейки коленвала многоцилиндрового двигателя выполнены в разных плоскостях, что необходимо для равномерного чередования рабочих тактов в разных цилиндрах. Коренные и шатунные шейки соединяются между собой щеками. Для уменьшения центробежных сил, создаваемых кривошипами, на коленчатом валу выполнены противовесы, а шатунные шейки сделаны полыми. Поверхность коренных и шатунных шеек закаливают токами высокой частоты. В шейках и щеках имеются каналы, предназначенные для подвода масла. В каждой шатунной шейке имеется полость, которая выполняет функцию грязеуловителя. В грязеуловители масло поступает от коренных шеек и при вращении вала частицы грязи, находящиеся в масле, под действием центробежных сил отделяются от масла и оседают на стенках. Очистка грязеуловителей осуществляется через завернутые в их торцы резьбовые пробки только при разборке двигателя. Перемещение вала в продольном направлении ограничивается упорными шайбами. В местах выхода коленчатого вала из картера двигателя имеются сальники и уплотнители, предотвращающие утечку масла.

В работающем двигателе нагрузки на шатунные и коренные шейки коленчатого вала очень велики. Для уменьшения трения шейки вала расположены в подшипниках скольжения, которые выполнены в виде металлических вкладышей, покрытых антифрикционным слоем. Вкладыши состоят из двух половинок. Шатунные подшипники устанавливаются в нижней разъемной головке шатуна, а коренные – в блоке и крышке подшипника. Крышки коренных подшипников прикручиваются болтами к блоку цилиндров и стопорятся во избежание самоотвертывания. Чтобы вкладыши не провертывались, в них делают выступы, а в крышках, седлах и головках шатунов – соответствующие им уступы.

Маховик уменьшает неравномерность работы двигателя, облегчает его пуск и способствует плавному троганию автомобиля с места. Маховик изготовлен в виде массивного чугунного диска и прикреплен к фланцу коленвала болтами с гайками. При изготовлении маховик балансируется вместе с коленчатым валом. Для того чтобы при разборке двигателя балансировка не нарушилась, маховик устанавливается на несимметрично расположенные штифты или болты. Таким образом исключается его неправильная установка. В некоторых двигателях для снижения крутильных колебаний, передаваемых на КПП, применяются двухмассовые маховики, представляющие собой два диска, упруго соединенные между собой. Диски могут смещаться относительно друг друга в радиальном направлении. На ободе маховика наносятся метки, по которым устанавливают поршень первого цилиндра в в.м.т. при установке зажигания или момента начала подачи топлива (для дизелей). Также на обод крепится зубчатый венец, предназначенный для зацепления с бендиксом стартера.

Для уменьшения вибрации в рядных двигателях применяются балансирные валы, расположенные под коленчатым валом в масляном поддоне.

МаховикДвухмассовый маховикБалансирные валыПоддон картера

Картер двигателя отливается заодно с блоком цилиндров. К нему крепятся детали кривошипно-шатунного и газораспределительного механизмов. Для повышения жесткости внутри картера выполнены ребра, в которых расточены гнезда коренных подшипников коленчатого вала. Снизу картер закрывается поддоном, выштампованным из тонкого стального листа. Поддон используется как резервуар для масла и защищает детали двигателя от загрязнения. В нижней части поддона имеется пробка для слива моторного масла. Поддон крепится к картеру болтами. Для предотвращения утечки масла между ними устанавливается прокладка.

Неисправности КШМ

К признакам неисправности КШМ относятся: появление посторонних стуков и шумов, падение мощности двигателя, повышенный расход масла, перерасход топлива, появление дыма в отработанных газах.

Стуки и шумы в двигателе возникают в результате износа его основных деталей и появления между сопряженными деталями увеличенных зазоров. При износе поршня и цилиндра, а также при увеличении зазора между ними возникает звонкий металлический стук, хорошо прослушиваемый при работе холодного двигателя. Резкий металлический стук на всех режимах работы двигателя свидетельствует об увеличении зазора между поршневым пальцем и втулкой верхней головки шатуна. Усиление стука при резком увеличении числа оборотов коленчатого вала свидетельствует об износе вкладышей коренных или шатунных подшипников, причем стук более глухого тона указывает на износ вкладышей коренных подшипников. При большом износе вкладышей возможно резкое падение давление масла. В этом случае эксплуатировать двигатель нельзя.

Падение мощности двигателя возникает при износе или залегании в канавках поршневых колец, износе поршней и цилиндров, а также плохой затяжке головки цилиндров. Эти неисправности вызывают падение компрессии в цилиндре. Компрессию проверяют при помощи компрессометра на теплом двигателе. Для этого выкручивают все свечи, и на место одной из них устанавливают наконечник компрессометра. При полностью открытом дросселе прокручивают двигатель стартером в течение 2-3 секунд. Таким образом последовательно проверяют все цилиндры. Величина компрессии должна быть в пределах, указанных в технических данных двигателя. Разница в компрессии между отдельными цилиндрами не должна превышать 1 кГ/см2.

Повышенный расход масла, перерасход топлива, появление дыма в отработанных газах (при нормальном уровне масла в картере) обычно появляются при залегании поршневых колец или износе колец и цилиндров. Залегание кольца можно устранить без разборки двигателя, залив в цилиндр через отверстие для свечи зажигания специальную жидкость.

Отложение нагара на днищах поршней и камер сгорания снижает теплопроводность, что вызывает перегрев двигателя, падение мощности и повышение расхода топлива.

Трещины в стенках рубашки охлаждения блока и головки блока цилиндров могут появиться в результате замерзания охлаждающей жидкости, заполнения системы охлаждения горячего двигателя холодной охлаждающей жидкостью или в результате перегрева двигателя. Через трещины в блоке цилиндров охлаждающая жидкость может попадать в цилиндры. При этом цвет выхлопных газов становится белым.

Кривошип (механизм) | История Вики

Кривошип представляет собой рычаг, прикрепленный под прямым углом к ​​вращающемуся валу, посредством которого возвратно-поступательное движение передается на вал или принимается от него. Он используется для преобразования кругового движения в возвратно-поступательное или возвратно-поступательное в круговое движение. Рычаг может быть изогнутой частью вала или отдельным рычагом, прикрепленным к нему. К концу кривошипа шарниром прикреплен стержень, обычно называемый шатуном. Конец стержня, прикрепленный к кривошипу, совершает круговое движение, в то время как другой конец обычно вынужден двигаться линейным скользящим движением внутрь и наружу.

Термин часто относится к кривошипу, приводимому в действие человеком, который используется для ручного поворота оси, как в шатуне велосипеда или в сверле со скобами и сверлами. В этом случае рука или нога человека служит шатуном, прикладывая возвратно-поступательное усилие к кривошипу. Часто есть штанга, перпендикулярная другому концу руки, часто со свободно вращающейся ручкой на ней, чтобы держать ее в руке, или в случае работы ногой (обычно со второй рукой для другой ноги) с свободно вращающаяся педаль.

Файл: Bundesarchiv Bild 135-BB-152-11, Tibetexpedition, Tibeter mit Handmühle.jpg

Тибетцы, управляющие кверном (1938). Перпендикулярная ручка таких вращающихся ручных фрез работает как кривошип. [1] [2]

Эксцентричный кривошипно-шатунный механизм появился в Китае с 4 века до нашей эры. [3] Ручные кривошипы использовались во времена династии Хань (202 г. до н.э. — 220 г. н.э.), как изображают модели глазурованных гробниц эпохи Хань из I века до н.э., и впоследствии использовались в Китае для наматывания шелка и прядение конопли, для веялки сельскохозяйственных культур, в водяном просеивателе муки, в металлургических мехах с гидравлическим приводом и в лебедке колодца. [4] [5] Самое раннее использование кривошипа в машине произошло в веялке с кривошипным приводом в провинции Хань, Китай. [6]

Римская железная рукоятка для кривошипа была обнаружена при раскопках в Августе Раурика, Швейцария. Изделие длиной 82,5 см с ручкой длиной 15 см имеет еще неизвестное назначение и датируется не позднее прибл. 250 г. н.э. [7] Свидетельства того, что кривошип появился на лесопилке в конце Хиераполиса (Малая Азия), относящейся к 3-м веку, в то время как две каменные лесопилки 6-го века также были найдены в Эфесе, Малая Азия, и Герасе, Иордания. [8] В Китае в 5 веке появились кривошипно-шатунные механизмы, а в 6-м веке — кривошипно-шатунные механизмы со штоком поршня. [3]

Устройство, показанное в каролингской рукописи начала 9 века Утрехтская Псалтырь , представляет собой кривошипную рукоятку, используемую с вращающимся точильным камнем. [9] Ученые указывают на использование кривошипных рукояток в трепанационных сверлах в работе 10 века испанского хирурга-мусульманина Абу аль-Касима аль-Захрави (936–1013). [9] Бенедиктинский монах Феофил Пресвитер (ок. 1070–1125) описал кривошипные рукоятки, «используемые для токарной обработки литейных стержней», согласно Нидхэму. [10]

В мусульманском мире немеханический кривошип появляется в середине 9 века в нескольких гидравлических устройствах, описанных братьями Бану Муса в их «Книге изобретательных устройств » . [11] Эти автоматически приводимые в действие кривошипы используются в нескольких устройствах, описанных в книге, два из которых имеют действие, приближенное к коленчатому валу.Автоматический кривошип братьев Бану Муса не позволил бы полностью вращаться, но потребовалась лишь небольшая модификация, чтобы преобразовать его в коленчатый вал. [12] Арабский изобретатель Аль-Джазари (1136–1206) описал кривошипно-шатунную систему вращающейся машины в двух своих водоподъемных машинах. [13] Его двухцилиндровый насос включал самый ранний известный коленчатый вал, [14] , в то время как его другая машина была оснащена первым известным кривошипно-скользящим механизмом. [15] Итальянский врач и изобретатель Гвидо да Виджевано (ок.1280–1349) сделал иллюстрации к весельной лодке и боевым экипажам, которые приводились в движение вручную проворачиваемыми коленчатыми валами и зубчатыми колесами. [16] Кривошип стал обычным явлением в Европе к началу 15 века, что можно увидеть в работах таких людей, как военный инженер Конрад Кезер (1366 — после 1405). [16]

Шатуны раньше использовались на некоторых машинах в начале 20 века; например, почти все фонографы до 1930-х годов приводились в действие часовыми двигателями с заводными рукоятками, а автомобильные двигатели внутреннего сгорания обычно запускались кривошипами (известные в Великобритании как стартовые ручки , ), до того как электрические стартеры вошли в широкое распространение.

Файл: Преобразование вращательного движения в линейное. Crank.jpg

Кривошип

Файл: CrankPencilShapener.jpg

Ручной кривошип на точилке для карандашей

К знакомым примерам относятся:

Используя руку [править | править источник]

Использование ног [править | править источник]

Двигатели

[править | править источник]

Почти все поршневые двигатели используют кривошипы для преобразования возвратно-поступательного движения поршней во вращательное движение. Кривошипы встроены в коленчатый вал.

Смещение конца шатуна приблизительно пропорционально косинусу угла поворота кривошипа, когда он измеряется от верхней мертвой точки. Таким образом, возвратно-поступательное движение, создаваемое устойчиво вращающимся кривошипом и шатуном, приблизительно представляет собой простое гармоническое движение:

где x — расстояние конца шатуна от оси кривошипа, l — длина шатуна, r — длина кривошипа, а α — угол поворота кривошипа, измеренный от верхней мертвой точки (ВМТ).Технически возвратно-поступательное движение шатуна немного отличается от синусоидального движения из-за изменения угла шатуна во время цикла.

Механическое преимущество кривошипа, соотношение между силой на шатуне и крутящим моментом на валу, изменяется на протяжении цикла кривошипа. Отношения между ними примерно:

где — крутящий момент, а F — сила на шатуне.Для данного усилия на кривошип, крутящий момент максимален при углах поворота кривошипа α = 90 ° или 270 ° от ВМТ. Когда кривошип приводится в движение шатуном, проблема возникает, когда кривошип находится в верхней мертвой точке (0 °) или нижней мертвой точке (180 °). В этих точках цикла кривошипа сила на шатуне не вызывает крутящего момента на кривошипе. Следовательно, если кривошип неподвижен и оказывается в одной из этих двух точек, он не может быть запущен с помощью шатуна. По этой причине в паровозах, колеса которых приводятся в движение кривошипами, два шатуна прикреплены к колесам под углом 90 °, так что независимо от положения колес при запуске двигателя по крайней мере один шатун будет иметь возможность приложить крутящий момент для запуска поезда.

  1. ↑ Ritti, Grewe & Kessener 2007, стр. 159
  2. ↑ Лукас 2005, стр. 5, сл. 9
  3. 3,0 3,1 Джозеф Нидхэм (1975), «История и человеческие ценности: китайский взгляд на мировую науку и технологии», Философия и социальные действия II (1-2): 1-33 [ 4], http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.293&rep=rep1&type=pdf#page=12, получено 13 марта 2010 г.
  4. ↑ Needham 1986, стр.118–119.
  5. ↑ Темпл, Роберт. (1986). Гений Китая: 3000 лет науки, открытий и изобретений , стр. 46. ​​С нападающим Джозефом Нидхэмом. Нью-Йорк: Simon and Schuster, Inc. ISBN 0671620282.
  6. Н. Сивин (август 1968), «Обзор: Наука и цивилизация в Китае, Джозефа Нидхэма», Журнал азиатских исследований (Ассоциация азиатских исследований) 27 (4): 859-864 [862 ], http://www.jstor.org/stable/2051584
  7. ↑ Лаур-Беларт 1988, с.51–52, 56, рис. 42
  8. ↑ Ritti, Grewe & Kessener 2007, стр. 161
  9. 9.0 9.1 Needham 1986, p. 112.
  10. ↑ Нидхэм 1986, стр. 112–113.
  11. А. Ф. Л. Бистон, М. Дж. Л. Янг, Дж. Д. Лэтэм, Роберт Бертрам Сержант (1990), Кембриджская история арабской литературы , Cambridge University Press, стр. 266, ISBN 0521327636
  12. Бану Муса, Дональд Рутледж Хилл (1979), Книга гениальных устройств (Китаб аль-Чиял) , Springer, стр.23-4, ISBN

    08339

  13. ↑ Ахмад И Хасан. Система кривошипно-шатун в непрерывно вращающейся машине.
  14. Салли Ганчи, Сара Ганчер (2009), Ислам и наука, медицина и технологии , The Rosen Publishing Group, стр. 41, ISBN 1435850661
  15. Лотфи Ромдхан и Саид Зеглул (2010), «Аль-Джазари (1136–1206)», История механизмов и машиноведения (Springer) 7 : 1-21, DOI: 10.1007 / 978-90- 481-2346-9, ISBN 978-90-481-2346-9, ISSN 1875-3442
  16. 16.0 16,1 Нидхэм 1986, стр. 113.

Библиография [править | править источник]

  • Лукас, Адам Роберт (2005), «Промышленное фрезерование в древнем и средневековом мире. Обзор свидетельств промышленной революции в средневековой Европе», Технология и культура 46 : 1–30
  • Laur-Belart, Rudolf (1988), Führer durch Augusta Raurica (5-е изд.), Augst
  • Needham, Joseph (1991), Наука и цивилизация в Китае: Том 4, Физика и физические технологии: Часть 2, Машиностроение , Cambridge University Press, ISBN 0521058031 .
  • Ritti, Tullia; Греве, Клаус; Кессенер, Пол (2007), «Рельеф водяной каменной пилы на саркофаге в Иераполе и его последствия», Журнал римской археологии 20 : 138–163

Кривошип (механизм) | Трактор и строительный завод Wiki

Кривошип представляет собой рычаг, прикрепленный под прямым углом к ​​вращающемуся валу, посредством которого возвратно-поступательное движение передается на вал или принимается от него. Он используется для преобразования кругового движения в возвратно-поступательное или иногда возвратно-поступательное движение в круговое.Рычаг может быть изогнутой частью вала или отдельным рычагом, прикрепленным к нему. К концу кривошипа шарниром прикреплен стержень, обычно называемый шатуном. Конец стержня, прикрепленный к кривошипу, совершает круговое движение, в то время как другой конец обычно вынужден двигаться линейным скользящим движением внутрь и наружу.

Термин часто относится к кривошипу, приводимому в действие человеком, который используется для ручного поворота оси, как в шатуне велосипеда или в сверле со скобами и сверлами. В этом случае рука или нога человека служит шатуном, прикладывая возвратно-поступательное усилие к кривошипу.Часто есть штанга, перпендикулярная другому концу руки, часто со свободно вращающейся ручкой на ней, чтобы держать ее в руке, или в случае работы ногой (обычно со второй рукой для другой ноги) с свободно вращающаяся педаль.

Кривошип

Рукоятка точилки для карандашей

К знакомым примерам относятся:

Шатуны с ручным приводом [править | править источник]

[править | править источник]

Двигатели

[править | править источник]

Почти все поршневые двигатели используют кривошипы для преобразования возвратно-поступательного движения поршней во вращательное движение.Кривошипы встроены в коленчатый вал.

Смещение конца шатуна приблизительно пропорционально косинусу угла поворота кривошипа, когда он измеряется от верхней мертвой точки (ВМТ). Таким образом, возвратно-поступательное движение, создаваемое устойчиво вращающимся кривошипом и шатуном, приблизительно представляет собой простое гармоническое движение:

где x — расстояние конца шатуна от оси кривошипа, l — длина шатуна, r — длина кривошипа, а α — угол поворота кривошипа, измеренный от верхней мертвой точки (ВМТ).Технически возвратно-поступательное движение шатуна немного отличается от синусоидального движения из-за изменения угла шатуна во время цикла.

Механическое преимущество кривошипа, соотношение между силой на шатуне и крутящим моментом на валу, изменяется на протяжении цикла кривошипа. Отношения между ними примерно:

где — крутящий момент, а F — сила на шатуне.Для данного усилия на кривошип, крутящий момент максимален при углах поворота кривошипа α = 90 ° или 270 ° от ВМТ. Когда кривошип приводится в движение шатуном, проблема возникает, когда кривошип находится в верхней мертвой точке (0 °) или нижней мертвой точке (180 °). В этих точках цикла кривошипа сила на шатуне не вызывает крутящего момента на кривошипе. Следовательно, если кривошип неподвижен и оказывается в одной из этих двух точек, он не может быть запущен с помощью шатуна. По этой причине в паровозах, колеса которых приводятся в движение кривошипами, два шатуна прикреплены к колесам под углом 90 °, так что независимо от положения колес при запуске двигателя по крайней мере один шатун будет иметь возможность приложить крутящий момент для запуска поезда.

Западный мир [править | править источник]

Классическая античность [править | править источник]
См. Также: Римская технология и Список римских водяных мельниц. До н.э. кельтиберийская Испания и в конечном итоге распространившаяся по Римской империи представляет собой чудак. [2] [3] [4] Римский железный коленчатый вал неизвестного назначения, датируемый II веком нашей эры, был обнаружен при раскопках в Августе Рорика, Швейцария. Кусок длиной 82,5 см на одном конце имеет бронзовую ручку длиной 15 см, другая ручка утеряна. [5] [1]

A ок. В Ашхайме, недалеко от Мюнхена, были раскопаны настоящие железные кривошипы длиной 40 см вместе с парой раздробленных жерновов диаметром 50-65 см и различными железными изделиями. Римская мельница с кривошипным механизмом датируется концом 2 века нашей эры. [6] Часто цитируемая современная реконструкция насоса с ковшовой цепью, приводимого в движение маховиком с ручным приводом с кораблей Nemi, была отклонена как «археологическая фантастика». [7]

Лесопилка в Риме Хиераполис, построенная в 3 веке нашей эры, самая ранняя из известных машин, сочетающая кривошип с шатуном. [8]

Самые ранние свидетельства того, что кривошип, соединенный с шатуном в машине, где-либо в мире, встречается на лесопилке позднего римского Иераполиса 3-го века нашей эры и двух римских каменных лесопилках в Герасе, Римская Сирия и Эфес, Малая Азия (оба — VI век нашей эры). [8] На фронтоне мельницы Хиераполиса показано водяное колесо, питаемое дорожкой мельницы, приводящее в действие через зубчатую передачу две рамные пилы, которые режут прямоугольные блоки с помощью каких-то шатунов и, при необходимости, кривошипов. . Сопроводительная надпись на греческом языке. [9]

Кривошипно-шатунный механизм двух других лесопилок, подтвержденных археологами, работал без зубчатой ​​передачи. [10] [11] В древней литературе мы находим упоминание о работе водных пил по мрамору недалеко от Трира, ныне Германия, автором поэта Авзония конца 4-го века; [8] Примерно в то же время эти типы мельниц, кажется, также указаны христианским святым Григорием Нисским из Анатолии, демонстрирующим разнообразное использование гидроэнергии во многих частях Римской империи. [12] Три находит отодвигающую дату изобретения кривошипа и шатуна на целое тысячелетие; [8] Впервые все основные компоненты гораздо более позднего парового двигателя были собраны с помощью одной технологической культуры:

С кривошипно-шатунной системой, все элементы для создания парового двигателя (изобретен в 1712 году) — эолипил Героя (генерирующий паровую энергию), цилиндр и поршень (в металлических силовых насосах), обратные клапаны (в водяных насосах) , зубчатые передачи (в водяных мельницах и часах) — были известны еще во времена Римской империи. [13]

Средневековье [править | править источник]
См. Также: Средневековая технология

Боевая повозка Виджевано

Вращающийся точильный камень — самое раннее его изображение — [14] , который приводится в действие рукояткой рукоятки, показан в рукописи Каролингов Утрехтский Псалтырь ; рисунок пером около 830 года восходит к позднему античному оригиналу. [15] Музыкальный трактат, приписываемый аббату Одо из Клюни (ок.878−942) описывает струнный инструмент, который звучал с помощью смолистого колеса, вращаемого рукояткой; позже устройство появляется в двух иллюминированных рукописях XII века. [14] Есть также две фотографии Фортуны, вращающей колесо судьбы, из этого и следующего столетия. [14]

Использование кривошипных рукояток в трепанационных сверлах было описано в издании 1887 года «Dictionnaire des Antiquités Grecques et Romaines », выпущенном в 1887 году и принадлежащем испанскому мусульманскому хирургу Абу аль-Касим аль-Захрави; однако существование такого устройства не может быть подтверждено исходным освещением и, следовательно, не подлежит рассмотрению. [16] Бенедиктинский монах Феофил Пресвитер (ок. 1070–1125) описал кривошипные рукоятки, «используемые при токарной обработке литейных стержней». [17]

Итальянский врач Гвидо да Виджевано (ок. 1280–1349), планируя новый крестовый поход, сделал иллюстрации для гребного катера и боевых экипажей, которые приводились в движение вручную вращаемыми составными кривошипами и зубчатыми колесами (в центре рисунка). изображение). [18] Псалтырь Латтрелла , датируемый примерно 1340 годом, описывает точильный камень, который вращался двумя кривошипами, по одному на каждом конце его оси; ручная мельница с редуктором, работающая как с одной, так и с двумя рукоятками, появилась позже, в 15 веке; [19]

Средневековые краны иногда приводились в движение кривошипами, хотя чаще — лебедками. [20]

Возрождение [править | править источник]
См. Также: Технология Возрождения

Гребная лодка 15-го века, лопасти которой вращаются одноходовыми коленчатыми валами (Аноним из Гуситских войн)

Кривошип стал обычным явлением в Европе к началу 15-го века, его часто видели в работах таких, как немецкий военный инженер Конрад Кезер. [19] Устройства, изображенные в Bellifortis Кизера, включают изогнутые лебедки (вместо колес со спицами) для крепления осадных арбалетов, кривую цепь ведер для подъема воды и кривошипы, прикрепленные к колесу колоколов. [19] Kyeser также оснастил винты Archimedes для подъема воды кривошипной рукояткой, нововведением, которое впоследствии заменило древнюю практику работы с трубой с помощью протектора. [21] Самое раннее свидетельство оснащения колодезного подъемника кривошипами найдено на миниатюре ок. 1425 в немецком Hausbuch Фонда Менделя . [22]

Немецкий арбалетчик, взводящий свое оружие с помощью коленчатого реечного механизма (ок.1493)

Первые изображения составного кривошипа в скобе плотника появляются между 1420 и 1430 годами в различных произведениях искусства Северной Европы. [23] Быстрое внедрение составной кривошипа можно проследить в работах неизвестного немецкого инженера Анонима времен гуситских войн о состоянии военной техники своего времени: во-первых, шатун, примененный Что касается кривошипов, то снова появились шатуны, во-вторых, шатуны с двойным составом также стали оснащаться шатунами, и в-третьих, для этих шатунов использовался маховик, чтобы вывести их из «мертвой точки».

На одном из рисунков Анонима гуситских войн изображена лодка с парой гребных колес на каждом конце, вращаемой людьми, управляющими составными кривошипами (см. Выше). Эта концепция была значительно улучшена итальянцем Роберто Вальтурио в 1463 году, который изобрел лодку с пятью наборами, в которой все параллельные кривошипы соединены с одним источником энергии одним шатуном, идея также была подхвачена его соотечественником Франческо ди Джорджио. . [24]

Водоподъемный насос, приводимый в действие кривошипно-шатунным механизмом (Георг Андреас Бёклер, 1661)

В Италии эпохи Возрождения самые ранние свидетельства использования составной кривошипа и шатуна были найдены в альбомах Taccola, но устройство все еще существует. механически неправильно понят. [25] Тщательное улавливание этого движения кривошипа демонстрирует немного позднее Пизанелло, который нарисовал поршневой насос с приводом от него.
от водяного колеса и приводится в действие двумя простыми кривошипами и двумя шатунами. [25]

В 15 веке также были введены изогнутые реечные устройства, называемые кранкинами, которые устанавливались на приклад арбалета как средство приложения еще большей силы при захвате ракетного оружия (см. Справа) . [26] В текстильной промышленности были внедрены изогнутые барабаны для наматывания мотков пряжи. [19]

Примерно в 1480 году роторный точильный камень раннего средневековья был усовершенствован с помощью педали и кривошипно-шатунного механизма. Шатуны, установленные на тележках, впервые появляются на немецкой гравюре 1589 года. [27]

Начиная с 16 века, свидетельства использования кривошипов и шатунов, интегрированных в конструкцию машин, становятся многочисленными в технологических трактатах того периода: Агостино Рамелли. Разнообразные и искусственные машины Только из 1588 изображает восемнадцать примеров, число, которое поднимается в Theatrum Machinarum Novum Георга Андреаса Бёклера до 45 различных машин, что составляет одну треть от общего числа. [28]

Дальний Восток [править | править источник]

Тибетец, управляющий кверном (1938). Перпендикулярная ручка таких вращающихся ручных фрез работает как кривошип. [3] [4]

Самая ранняя настоящая кривошипная ручка в ханьском Китае встречается, как изображают модели глазурованных гробниц эпохи Хань, в сельскохозяйственном веялке [29] , датированной не позднее 200 г. [30] После этого кривошип использовался в Китае для наматывания шелка и прядения конопли, в водяном просеивателе муки, в металлургических сильфонах с гидравлическим приводом и в лебедке колодца. [31] Однако потенциал кривошипа по преобразованию кругового движения в возвратно-поступательное движение, кажется, никогда не был полностью реализован в Китае, и кривошип, как правило, отсутствовал в таких машинах до начала 20-го века. [32]

Ближний Восток [править | править источник]

В то время как американо-американский историк технологий Линн Уайт не смогла найти «убедительных доказательств даже простейшего применения кривошипа до книги аль-Джазари 1206 г. н.э.», [19] , согласно Бистону, кривошип появляется в середине. 9 век в нескольких гидравлических устройствах, описанных братьями Бану Муса в их книге «Книга изобретательных устройств» . [33] Эти устройства, однако, совершали только частичные вращения и не могли передавать большую мощность, [34] , хотя потребовалась бы лишь небольшая модификация, чтобы преобразовать их в коленчатый вал. [35]

Аль-Джазари (1136–1206) описал кривошипно-шатунную систему вращающейся машины в двух своих водоподъемных машинах. [36] Его двухцилиндровый насос включал коленчатый вал, [37] , но устройство было излишне сложным, что указывало на то, что он все еще не полностью понимал концепцию преобразования энергии. [38] После аль-Джазари чудаки в исламских технологиях не прослеживаются до копии начала 15 века «Механики » древнегреческого инженера Героя Александрийского. [16]

20 век [править | править источник]

Шатуны раньше использовались на некоторых машинах в начале 20 века; например, почти все фонографы до 1930-х годов приводились в действие заводными двигателями с кривошипами.
Автомобильные двигатели внутреннего сгорания обычно запускались кривошипами (известные в Великобритании как стартовые ручки , ) до того, как электрические стартеры вошли в широкое распространение.

В руководстве пользователя Reo 1918 года описывается , как запускать автомобиль вручную:

  • Первое: убедитесь, что рычаг переключения передач находится в нейтральном положении.
  • Второй: Педаль сцепления не зафиксирована, и сцепление включено. Педаль тормоза выдвинута вперед, насколько это возможно, притормаживая заднее колесо.
  • Третий: Посмотрите на этот рычаг контроля искры, который представляет собой короткий рычаг, расположенный на верхней части рулевого колеса с правой стороны. находится как можно дальше назад к водителю, а длинный рычаг в верхней части рулевой колонки, управляющий карбюратором, сдвинут вперед примерно на один дюйм от своего запаздывающего положения.
  • Четвертый: поверните ключ зажигания в точку, отмеченную «B» или «M».
  • Пятое: Установите регулятор карбюратора на рулевой колонке в точку, обозначенную «START». Убедитесь, что в карбюраторе есть бензин. Проверьте это, нажав на небольшой штифт, выступающий из передней части бачка, пока карбюратор не затопит. Если заливка не происходит, это означает, что топливо не поступает в карбюратор должным образом, и нельзя ожидать запуска двигателя. См. Инструкции на стр. 56 по заполнению вакуумного бака.
  • Шестое: Убедившись, что в карбюратор есть запас топлива, возьмитесь за ручку пускового кривошипа, нажмите в конце, чтобы защелкнуть храповик со штифтом коленчатого вала, и поверните двигатель, быстро потянув вверх. Никогда не давите вниз, потому что, если по какой-либо причине двигатель откатится, это подвергнет опасности оператора.

Коленчатый вал — коленчатый вал, который также выполняет роль оси. Применяется на паровозах с внутренними цилиндрами.

  1. 1.0 1,1 Schiöler 2009, стр. 113f.
  2. ↑ Дата: Франкель 2003, стр. 17–19.
  3. 3,0 3,1 Ritti, Grewe & Kessener 2007, стр. 159
  4. 4,0 4,1 Лукас 2005, стр. 5, сл. 9
  5. ↑ Лаур-Беларт 1988, с. 51–52, 56, рис. 42
  6. ↑ Volpert 1997, стр.195, 199
  7. ↑ White, Jr. 1962, стр. 105f .; Олесон 1984, стр. 230f.
  8. 8,0 8,1 8,2 8.3 Ritti, Grewe & Kessener 2007, стр. 161:

    Из-за открытий в Эфесе и Герасе изобретение кривошипа и шатуна пришлось перенести с 13-го на 6-й век; теперь рельеф Иераполя переносит его еще на три столетия назад, что подтверждает, что каменные пилорамы с водяной тягой действительно использовались, когда Авзоний писал свою «Мозеллу».

  9. ↑ Ritti, Grewe & Kessener 2007, стр. 139–141
  10. ↑ Ritti, Grewe & Kessener 2007, стр. 149–153
  11. ↑ Mangartz 2006, стр.579f.
  12. ↑ Wilson 2002, p. 16
  13. ↑ Ritti, Grewe & Kessener 2007, стр. 156, сл. 74
  14. 14,0 14,1 14,2 Уайт, мл. 1962 г., стр. 110
  15. ↑ Hägermann & Schneider 1997, стр. 425f.
  16. 16,0 16,1 Уайт, мл. 1962 г., стр. 170
  17. ↑ Нидхэм 1986, стр. 112–113.
  18. ↑ Холл 1979, стр. 80
  19. 19,0 19,1 19,2 19.3 19,4 Уайт, мл. 1962 г., стр. 111
  20. ↑ Холл 1979, стр. 48
  21. ↑ Уайт, мл. 1962, стр. 105, 111, 168
  22. ↑ White, Jr. 1962, стр. 167; Холл 1979, стр. 52
  23. ↑ White, Jr. 1962, стр. 112
  24. ↑ White, Jr. 1962, стр. 114
  25. 25,0 25,1 Уайт, мл. 1962 г., стр. 113
  26. ↑ Холл 1979, стр. 74f.
  27. ↑ White, Jr. 1962, стр. 167
  28. ↑ White, Jr. 1962, стр. 172
  29. ↑ Уайт-младший.1962, стр. 104
  30. ↑ Нидхэм 1986, стр. 118–119.
  31. ↑ White, Jr. 1962, стр. 104:

    Тем не менее, изучающий китайскую технологию начала двадцатого века отмечает, что даже поколение назад китайцы «не достигли той стадии, когда непрерывное вращательное движение заменяется возвратно-поступательным движением в технических приспособлениях, таких как дрель, токарный станок, пила». и т. д. Для выполнения этого шага необходимо знакомство с кривошипом. Кривошип в его простой рудиментарной форме мы находим в [современном] китайском лебедке, использование которого, однако, по-видимому, не дало импульса для преобразования возвратно-поступательного движения в круговое движение в других приспособлениях ».В Китае кривошип был известен, но оставался бездействующим в течение по крайней мере девятнадцати веков, его взрывной потенциал для прикладной механики не был признан и не использовался.

  32. ↑ аль-Хассан и Хилл 1992, стр. 45, 61
  33. ↑ Ахмад И Хасан. Система кривошипно-шатун в непрерывно вращающейся машине.
  34. ↑ White, Jr. 1962, стр. 170:

    Однако то, что аль-Джазари не совсем понял значение кривошипа для соединения возвратно-поступательного движения с вращательным движением, показано его чрезвычайно сложным насосом, приводимым в действие посредством зубчатого колеса, эксцентрично установленного на его оси.

Библиография [править | править источник]

9036 9036 9036 9064 9036 9036 9036 9036

v · d · e

Заголовок

А

Заполните общую статью, начиная с A

Кривошип (механизм) — 3D Анимация

Кривошип представляет собой рычаг, прикрепленный под прямым углом к ​​вращающемуся валу, посредством которого возвратно-поступательное движение передается на вал или принимается от него.Он используется для преобразования кругового движения в возвратно-поступательное или наоборот. Рычаг может быть изогнутой частью вала или отдельным рычагом или диском, прикрепленным к нему. К концу кривошипа с помощью стержня прикреплен стержень, обычно называемый шатун (шатун). Конец стержня, прикрепленный к кривошипу, совершает круговое движение, в то время как другой конец обычно вынужден двигаться линейным скользящим движением.

Термин часто относится к кривошипу, приводимому в действие человеком, который используется для ручного поворота оси, как в шатуне велосипеда или в сверле со скобами и сверлами.В этом случае рука или нога человека служит шатуном, прикладывая возвратно-поступательное усилие к кривошипу. Обычно есть штанга, перпендикулярная другому концу руки, часто со свободно вращающейся рукояткой или прикрепленной педалью.

Примеры

Знакомые примеры:

Ручные рукоятки

Двигатели

Почти во всех поршневых двигателях используются кривошипы (с шатунами) для преобразования возвратно-поступательного движения поршней во вращательное движение.Кривошипы встроены в коленчатый вал.

Механика

Смещение конца шатуна приблизительно пропорционально косинусу угла поворота кривошипа, когда он измеряется от верхней мертвой точки (ВМТ). Таким образом, возвратно-поступательное движение, создаваемое устойчиво вращающимся кривошипом и шатуном, приблизительно представляет собой простое гармоническое движение:

x = rcos⁡α + l {\ displaystyle x = r \ cos \ alpha + l}

, где x — расстояние конца шатуна от оси кривошипа, l — длина шатуна, r — длина кривошипа, а α — угол кривошипа, измеренный от верхней мертвой точки (ВМТ).{2} \ alpha}}}

Это различие становится значительным в высокоскоростных двигателях, которым могут потребоваться балансирные валы для уменьшения вибрации из-за этого «вторичного дисбаланса».

Механическое преимущество кривошипа, соотношение между силой на шатуне и крутящим моментом на валу, изменяется на протяжении цикла кривошипа. Отношения между ними примерно:

τ = Frsin⁡ (α + β) {\ displaystyle \ tau = Fr \ sin (\ alpha + \ beta) \,}

, где τ {\ displaystyle \ tau \,} — крутящий момент, а F сила на шатуне.{2} \ alpha}}}}

Например, для длины штока 6 дюймов и радиуса кривошипа 2 дюйма численное решение приведенного выше уравнения определяет, что минимумы скорости (максимальная скорость движения вниз) находятся при угле поворота кривошипа 73,17615 ° после ВМТ. . Затем, используя закон треугольного синуса, можно определить, что угол поворота кривошипа относительно шатуна составляет 88,21738 °, а угол шатуна составляет 18,60647 ° от вертикали (см. Уравнение движения поршня # Пример).

Когда кривошип приводится в движение шатуном, проблема возникает, когда кривошип находится в верхней мертвой точке (0 °) или нижней мертвой точке (180 °).В этих точках цикла кривошипа сила на шатуне не вызывает крутящего момента на кривошипе. Следовательно, если кривошип неподвижен и оказывается в одной из этих двух точек, он не может быть запущен с помощью шатуна. По этой причине в паровозах, колеса которых приводятся в движение кривошипами, шатуны прикреплены к колесам в точках, разделенных некоторым углом, так что независимо от положения колес при запуске двигателя по крайней мере один шатун будет иметь возможность приложить крутящий момент для запуска поезда.

История

Эксцентрично установленная ручка вращающейся ручной мельницы, которая появилась в кельтиберийской Испании V века до нашей эры и в конечном итоге распространилась по всей Римской империи, представляет собой кривошип. [3] [1] [2]

Хань Китай

Первые рукоятки с ручным приводом появились в Китае во времена династии Хань (202 г. до н.э. — 220 г. н.э.), как изображают модели глазурованных глиняных гробниц эпохи Хань, и впоследствии использовались в Китае для наматывания шелка и прядения конопли в сельском хозяйстве. веялки, в водяном просеивателе муки, для металлургических сильфонов с гидравлическим приводом и в лебедке колодца. [4] Однако потенциал кривошипа по преобразованию кругового движения в возвратно-поступательное движение, кажется, никогда не был полностью реализован в Китае, и кривошип, как правило, отсутствовал в таких машинах до начала 20-го века. [5]

Римская империя

Римская железная рукоятка неизвестного назначения, датируемая II веком нашей эры, была обнаружена в Августе Рорика, Швейцария. Кусок длиной 82,5 см на одном конце имеет бронзовую ручку длиной 15 см, другая ручка утеряна. [6] [7]

A ок. В Ашхайме, недалеко от Мюнхена, были раскопаны настоящие железные кривошипы длиной 40 см вместе с парой раздробленных жерновов диаметром 50-65 см и различными железными изделиями. Римская мельница с кривошипным механизмом датируется концом 2 века. [8] Часто цитируемая современная реконструкция насоса с ковшовой цепью, приводимого в движение маховиком с ручным приводом с кораблей Nemi, была отклонена как «археологическая фантастика». [9]

Свидетельства наличия кривошипа в сочетании с шатуном появляются на лесопилке Хиераполиса в Малой Азии с 3-го века и на двух каменных лесопилках в Герасе, Римская Сирия, и Эфесе, Малая Азия (оба 6-го века). [10] На фронтоне мельницы Хиераполис водяное колесо, питаемое дорожкой мельницы, приводится в действие через зубчатую передачу двух рамных пил, которые режут прямоугольные блоки с помощью каких-то шатунов и, в случае механической необходимости, кривошипов. . Сопроводительная надпись на греческом языке. [11]

Кривошипно-шатунный механизм двух других лесопилок, подтвержденных археологическими исследованиями, работал без зубчатой ​​передачи. [12] [13] В древней литературе есть упоминание о работе водных пил по мрамору недалеко от Трира, ныне Германия, автором поэта Авзония конца 4-го века; [10] Примерно в то же время эти типы мельниц, по-видимому, также указаны христианским святым Григорием Нисским из Анатолии, демонстрирующим разнообразное использование гидроэнергии во многих частях Римской империи. [14] Три находит дату изобретения кривошипно-шатунного механизма на целое тысячелетие. [10] По словам Туллии Ритти, Клауса Греве и Пола Кессенера:

С кривошипно-шатунной системой, все элементы для создания парового двигателя (изобретен в 1712 году) — эолипил Героя (генерирующий паровую энергию), цилиндр и поршень (в металлических силовых насосах), обратные клапаны (в водяных насосах) , зубчатые передачи (в водяных мельницах и часах) — были известны еще во времена Римской империи. [15]

Средневековый Ближний Восток

Кривошип появляется в середине 9 века в нескольких гидравлических устройствах, описанных братьями Бану Муса в их «Книге изобретательных устройств » . [16] Эти устройства, однако, совершали только частичные вращения и не могли передавать большую мощность, [17] , хотя потребовалась бы лишь небольшая модификация, чтобы преобразовать их в коленчатый вал. [18]

Аль-Джазари (1136–1206) описал кривошипно-шатунную систему вращающейся машины в двух своих водоподъемных машинах. [19] Его двухцилиндровый насос включал коленчатый вал, [20] включая коленчатый и валовой механизмы. [21]

Средневековая Европа

Кривошип стал обычным явлением в Европе к началу 15 века, что можно увидеть в работах таких людей, как военный инженер Конрад Кизер (1366 — после 1405). [22] Вращающийся точильный камень — самое раннее его изображение — [23] , который приводится в действие кривошипной рукояткой, показан в рукописи Каролингов Утрехтская Псалтырь ; рисунок пером около 830 года восходит к позднему античному оригиналу. [24] Музыкальный трактат, приписываемый аббату Одо из Клюни (ок.878−942) описывает струнный инструмент, который звучал с помощью смолистого колеса, вращаемого рукояткой; позже устройство появляется в двух иллюминированных рукописях XII века. [23] Есть также две фотографии Фортуны, вращающей колесо судьбы, из этого и следующего столетия. [23]

Использование кривошипных рукояток в трепанационных сверлах было описано в издании 1887 года «Dictionnaire des Antiquités Grecques et Romaines », выпущенном в 1887 году, заслугой испанского хирурга-мусульманина Абу аль-Касима аль-Захрави; однако существование такого устройства не может быть подтверждено исходным освещением и, следовательно, не подлежит рассмотрению. [25] Бенедиктинский монах Феофил Пресвитер (ок. 1070–1125) описал кривошипные рукоятки, «используемые при токарной обработке литейных стержней». [26]

Итальянский врач Гвидо да Виджевано (ок. 1280–1349), планируя новый крестовый поход, сделал иллюстрации для гребного катера и боевых экипажей, которые приводились в движение вручную вращающимися составными кривошипами и зубчатыми колесами (в центре рисунка). изображение). [27] Псалтырь Латтрелла , датируемый примерно 1340 годом, описывает точильный камень, который вращался двумя кривошипами, по одному на каждом конце его оси; ручная мельница с редуктором, работающая как с одной, так и с двумя рукоятками, появилась позже, в 15 веке; [28]

Средневековые краны иногда приводились в движение кривошипами, хотя чаще — лебедками. [29]

Европа эпохи Возрождения

Гребная лодка 15 века, лопасти которой вращаются одноходовыми коленчатыми валами (Аноним Гуситских войн)

К началу 15 века кривошип стал обычным явлением в Европе, и его часто можно было увидеть в работах таких авторов, как немецкий военный инженер Конрад Кезер. [28] Устройства, изображенные в Bellifortis Кизера, включают изогнутые лебедки (вместо колес со спицами) для крепления осадных арбалетов, кривую цепь ведер для подъема воды и кривошипы, прикрепленные к колесу колоколов. [28] Kyeser также оснастил винты Archimedes для подъема воды кривошипной рукояткой, нововведением, которое впоследствии заменило древнюю практику работы с трубой с помощью протектора. [30] Самое раннее свидетельство оснащения колодезного подъемника кривошипами найдено на миниатюре ок. 1425 в немецком Hausbuch Фонда Менделя . [31]

Первые изображения составного кривошипа в скобе плотника появляются между 1420 и 1430 годами в различных произведениях искусства Северной Европы. [32] Быстрое внедрение составной кривошипа можно проследить в работах неизвестного немецкого инженера Анонима времен гуситских войн о состоянии военной техники своего времени: во-первых, шатун, примененный Что касается кривошипов, то снова появились шатуны, во-вторых, шатуны с двойным составом также стали оснащаться шатунами, и в-третьих, для этих шатунов использовался маховик, чтобы вывести их из «мертвой точки».

На одном из рисунков Анонима гуситских войн изображена лодка с парой гребных колес на каждом конце, вращаемой людьми, управляющими составными кривошипами (см. Выше).Эта концепция была значительно улучшена итальянцем Роберто Вальтурио в 1463 году, который изобрел лодку с пятью наборами, в которой все параллельные кривошипы соединены с одним источником энергии одним шатуном, идея также была подхвачена его соотечественником Франческо ди Джорджио. . [33]

В Италии эпохи Возрождения самые ранние свидетельства использования составной кривошипа и шатуна можно найти в альбомах для рисования Такколы, но это устройство до сих пор не понимают механически. [34] Тщательное улавливание этого движения кривошипа демонстрирует немного позднее Пизанелло, который нарисовал поршневой насос с приводом от него.
от водяного колеса и приводится в действие двумя простыми кривошипами и двумя шатунами. [34]

В 15 веке также были введены изогнутые реечно-шестеренные устройства, называемые кранами, которые устанавливались на приклад арбалета как средство приложения еще большей силы при захвате ракетного оружия (см. Справа) . [35] В текстильной промышленности были внедрены изогнутые барабаны для наматывания мотков пряжи. [28]

Примерно в 1480 году роторный точильный камень раннего средневековья был усовершенствован с помощью педали и кривошипно-шатунного механизма. Шатуны, установленные на тележках, впервые появляются на немецкой гравюре 1589 года. [36]

Начиная с XVI века, свидетельства использования кривошипов и шатунов, интегрированных в конструкцию машин, становятся многочисленными в технологических трактатах того периода: только в книге Агостино Рамелли «Разнообразные и искусственные машины 1588 года» представлены восемнадцать примеров. Число, которое увеличивается в Theatrum Machinarum Novum Георга Андреаса Бёклера до 45 различных машин, что составляет одну треть от общего числа. [37]

20 век

Шатуны раньше использовались на некоторых машинах в начале 20 века; например, почти все фонографы до 1930-х годов приводились в действие заводными двигателями с кривошипами.В поршневых двигателях с возвратно-поступательным движением используются кривошипы для преобразования линейного движения поршня во вращательное движение. Двигатели внутреннего сгорания в автомобилях начала 20-го века обычно запускались ручными кривошипами (известные в Великобритании как стартовые ручки ) до того, как электрические стартеры вошли в широкое использование.

В руководстве пользователя Reo 1918 года описывается , как запускать автомобиль вручную:

  • Первое: убедитесь, что рычаг переключения передач находится в нейтральном положении.
  • Второй: Педаль сцепления не зафиксирована и сцепление включено.Педаль тормоза выдвинута вперед, насколько это возможно, притормаживая заднее колесо.
  • Третий: Посмотрите, что рычаг управления искрой, который представляет собой короткий рычаг, расположенный на верхней части рулевого колеса с правой стороны, повернут как можно дальше к водителю, а длинный рычаг находится на верхней части рулевой колонки, управляя карбюратором выдвигается вперед примерно на один дюйм от своего замедленного положения.
  • Четвертый: поверните ключ зажигания в точку, отмеченную «B» или «M».
  • Пятое: Установите регулятор карбюратора на рулевой колонке в точку, обозначенную «START.«Убедитесь, что в карбюраторе есть бензин. Проверьте это, нажав на маленький штифт, выступающий из передней части бачка, пока карбюратор не затопит. Если он не залит, это означает, что топливо не поступает в карбюратор должным образом. и двигатель не запустится. См. инструкции на стр. 56 по заполнению вакуумного бака.
  • Шестое: Убедившись, что в карбюратор поступает топливо, возьмитесь за ручку пускового кривошипа, надавите на нее до конца, чтобы защелкнуть храповик со штифтом коленчатого вала, и переверните двигатель, быстро потянув вверх.Никогда не давите вниз, потому что, если по какой-либо причине двигатель откатится, это подвергнет опасности оператора.

Коленчатый вал

Коленчатый вал — коленчатый вал, который также выполняет роль оси. Применяется на паровозах с внутренними цилиндрами.

См. Также

Глава 5. Планарные рычаги

Yi Zhang
с
Susan Finger
Stephannie Behrens

Содержание

5.1 Введение

5.1.1 Что такое механизмы связи?

Вы когда-нибудь задумывались, какой механизм вызывает появление ветрового стекла?
стеклоочиститель на передней вдове автомобиля для качания (рис.
5-1а)? Механизм, показанный на рисунке 5-1b,
преобразует вращательное движение двигателя в колебательное движение
стеклоочистителя.

Рисунок 5-1 Стеклоочиститель

Сделаем простой механизм с похожим поведением. Возьми немного
картона и сделайте четыре полоски, как показано на рисунке
5-2а.

Возьмите 4 штифта и соберите их, как показано на рисунке.
5-2b.

Теперь держите 6 дюймов. полоса, чтобы он не мог двигаться и повернуть
3 дюйма полоска. Вы увидите, что 4in. полоса колеблется.

Рисунок 5-2 Самостоятельный четырехзвенный рычажный механизм

Четырехзвенная связь — это самый простой и часто самый полезный механизм.
Как мы упоминали ранее, механизм, состоящий из твердых тел и
нижние пары называются связкой
(Охота 78).
В планарных механизмах есть только два вида
нижние пары —
революционные пары и
призматические пары.

Самая простая связь с замкнутым контуром — это четырехзвенная связь, которая имеет
четыре стержня, три подвижных звена, одно фиксированное звено и четыре штифта
суставы. Связь, имеющая хотя бы одно фиксированное звено, является механизмом.
Следующий пример соединения с четырьмя стержнями был создан в SimDesign в simdesign / fourbar.sim

Рисунок 5-3 Соединение с четырьмя стержнями в SimDesign

Этот механизм имеет три подвижных звена. Две ссылки прикреплены к
кадр, который не показан на этом рисунке. В SimDesign ссылки могут
быть прибитыми к фону, тем самым превратив их в рамку.

Сколько степеней свободы у этого механизма?
Если мы хотим, чтобы у него был только один, мы можем наложить одно ограничение на
связь, и он будет иметь определенное движение. Четыре стержня рычага
это самый простой и полезный механизм.

Напоминание: механизм состоит из твердых тел и нижних пар.
называемые связями (Хант 78). В
В планарных механизмах всего два вида нижних пар: поворотные пары и призматические.
пары.

5.1.2 Функции рычагов

Функция рычажного механизма состоит в том, чтобы производить вращение, колебание,
или возвратно-поступательное движение от вращения кривошипа или тисков
наоборот
(Ham et al.
58). Заявленные более конкретно связи могут использоваться для преобразования:

  1. Непрерывное вращение в непрерывное вращение с постоянной или
    переменное отношение угловой скорости.

  2. Непрерывное вращение в колебательное или возвратно-поступательное движение (или
    обратный), с постоянным или переменным соотношением скоростей.

  3. Колебание в колебание или возвратно-поступательное движение в возвратно-поступательное движение,
    с постоянным или переменным соотношением скоростей.

Связи выполняют множество различных функций, которые можно классифицировать.
в соответствии с основной задачей механизма:

  • Генерация функции : относительное движение между звеньями
    подключен к раме,

  • Создание пути : путь точки трассировки, или
  • Генерация движения : движение соединительного звена.

5.2 Четырехзвенный механизм

Один из простейших примеров ограниченной связи — это
четырехзвенный механизм . Разнообразные полезные механизмы могут
быть сформированным из четырехзвенного механизма с помощью небольших изменений, таких как
как изменение характера пар, пропорций ссылок,
и т. Д. . Кроме того, многие сложные механизмы связи представляют собой комбинации
двух и более таких механизмов. Большинство четырехзвенных механизмов
попадают в один из следующих двух классов:

  1. четырехзвенный рычажный механизм и
  2. кривошипно-шатунный механизм.
5.2.1 Примеры

Механизм параллелограмма

В параллелограммной четырехзвенной навеске ориентация муфты
не меняется во время движения. На рисунке изображен загрузчик.
Очевидно, что поддержание параллелизма важно в
погрузчик. Ковш не должен вращаться при подъеме и опускании.
Соответствующий файл SimDesign — simdesign / loader.sim.

Рисунок 5-4 Механизм фронтального погрузчика

Кривошипно-шатунный механизм

Механизм с четырьмя стержнями имеет особые конфигурации, созданные
создание одной или нескольких ссылок бесконечной длины.Ползунок-кривошип (или
кривошипно-ползунковый) механизм, показанный ниже, представляет собой четырехзвенный рычажный механизм с
слайдер, заменяющий бесконечно длинную выходную ссылку. Соответствующие
Файл SimDesign — simdesign / slider.crank.sim.

Рисунок 5-5 Кривошипно-ползунковый механизм

Эта конфигурация переводит вращательное движение в поступательное.
один. Большинство механизмов приводится в движение двигателями, а кривошипы-ползунки
часто используется для преобразования вращательного движения в линейное движение.

Кривошипно-поршневой

Вы также можете использовать ползунок в качестве входной ссылки, а рукоятку — в качестве
выходная ссылка.В этом случае механизм передает трансляционные
движение во вращательное движение. Поршни и кривошип во внутреннем
двигатель внутреннего сгорания является примером этого типа механизма. В
соответствующий файл SimDesign — simdesign / сжигание.sim.

Рисунок 5-6 Кривошип и поршень

Вы можете спросить, почему слева есть еще один слайдер и ссылка.
У этого механизма есть две мертвые точки. Слайдер и ссылка слева
помогите механизму преодолеть эти мертвые точки.

Устройство подачи блоков

Одно интересное применение ползунка-кривошипа — это устройство подачи блоков.В
Файл SimDesign можно найти в simdesign / block-feeder.sim

.

Рисунок 5-7 Устройство подачи блоков
5.2.2 Определения

В ряду планарных механизмов простейшая группа нижней пары
механизмы представляют собой четырехзвенные связи. A четырехшарнирный рычажный механизм
состоит из четырех стержневых звеньев и четырех поворотных пар, как показано на Рисунке 5-8.

Рисунок 5-8 Четырех стержневой рычажный механизм

Ссылка напротив рамки называется
соединительное звено , и звенья шарнирно прикреплены к раме
называются боковыми ссылками .Ссылка, которую можно свободно перемещать
360 градусов по отношению ко второму звену будет сказано
вращать относительно второго звена (не обязательно
Рамка). Если возможно, чтобы все четыре бара стали одновременно
выровнено, такое состояние называется точкой изменения .

Некоторые важные концепции в механизмах ссылок:

  1. Кривошип : Боковое звено, которое вращается относительно рамы,
    назвал кривошип .

  2. Коромысло : Любое звено, которое не вращается, называется коромыслом .
  3. Кривошипно-качающийся механизм : В четырехзвенной рычажной системе, если
    более короткое боковое звено вращается, а другое качается (, т. е. ,
    колеблется), он называется кривошипно-качающимся механизмом .

  4. Двухкривошипный механизм : В четырехшарнирном рычаге, если оба
    боковые звенья вращаются, это двухкривошипный механизм .

  5. Механизм с двойным качающимся рычагом : В четырехзвенном рычаге, если оба
    Боковые звенья рок-н-ролла называются двухкамерным коромыслом .
5.2.3 Классификация

Перед тем как классифицировать четырехзвенные связи, нам необходимо ввести некоторые
основная номенклатура.

В соединении с четырьмя стержнями мы имеем в виду линейный сегмент между
петли
на заданном звене как стержень , где:

  • s = длина самого короткого стержня
  • l = длина самого длинного стержня
  • p, q = длина промежуточного стержня

Теорема Грасгофа утверждает, что четырехзвенный механизм имеет при
не менее
одно вращающееся звено, если

s + l

(5-1)

и все три мобильных ссылки будут качаться, если

s + l> p + q

(5-2)

Неравенство 5-1 — это критерий Грасгофа .

Все механизмы с четырьмя стержнями попадают в одну из четырех категорий, перечисленных в
Таблица 5-1:

Таблица 5-1 Классификация механизмов с четырьмя стержнями
Чемодан л + с исп. р + д Самая короткая полоса Тип
1 Рама Двухкривошипная
2 Сторона Коромысло
3 Муфта Двойной рокер
4 = Любая Изменить точку
5 > Любая Двойной рокер

Из Таблицы 5-1 видно, что для механизма, имеющего кривошип,
сумма длин его самого короткого и самого длинного звеньев должна быть меньше, чем
или равна сумме длин двух других ссылок.Тем не мение,
это условие необходимо, но недостаточно. Механизмы, удовлетворяющие
это состояние делится на следующие три категории:

  1. Когда самая короткая ссылка — боковая,
    механизм — кривошипно-качающийся. Кратчайший
    звено — кривошип в механизме.

  2. Когда самое короткое звено — это кадр
    механизм, механизм — двухкривошипный.

  3. Когда самая короткая ссылка
    — сцепное звено, механизм — двухклавишный.
5.2.4 Угол передачи

На рисунке 5-11, если AB является входным звеном,
сила, приложенная к выходному звену, CD , передается
через соединительное звено BC . (То есть нажатие на ссылку
CD накладывает силу на звено AB , которое передается
по ссылке BC .) Для достаточно медленных движений
(незначительные силы инерции), сила в соединительном звене чисто
растяжение или сжатие (незначительное изгибающее действие) и направлено
вдоль г. до н.э. г.Для заданной силы в соединительном звене крутящий момент
передаваемый на выходной бар (около точки D ) максимален, когда
угол между
соединительный стержень BC и выходной стержень CD /2. Следовательно, угол BCD равен
называется угол передачи .

(5–3)

Рисунок 5-11 Угол передачи

Когда угол передачи значительно отклоняется от / 2, крутящий момент на выходном стержне
уменьшается и может оказаться недостаточным для преодоления трения в
система.По этой причине угол отклонения = | / 2- | не должно быть слишком большим. В
На практике нет определенного верхнего предела для, поскольку существование
силы инерции могут устранить нежелательные силовые отношения
который присутствует в статических условиях. Тем не менее следующие
критерию можно следовать.

5.2.5 Мертвая точка

Когда боковое звено, такое как AB на Рисунке 5-10, выравнивается с соединительным звеном BC , оно может только сжиматься или
удлиняется муфтой.В этой конфигурации крутящий момент, приложенный к
звено на другой стороне, CD , не может вызвать вращение звена
AB . Поэтому считается, что эта ссылка находится в мертвой точке
(иногда называется точкой переключения ).

Рисунок 5-10 Мертвая точка

На рисунке 5-11, если AB — кривошип, он может быть выровнен с BC в
полное выдвижение по линии AB 1 C 1 или в
сгибание с AB 2 в сложенном состоянии
В 2 С 2 .Обозначим угол АЦП через
и угол DAB на. Мы используем индекс 1 для
обозначают расширенное состояние и 2 для обозначения изогнутого состояния ссылок
AB и BC . В расширенном состоянии ссылка CD не может
вращать по часовой стрелке, не растягивая и не сжимая теоретически
жесткая линия AC 1 . Поэтому ссылку CD нельзя
перейти в запрещенную зону ниже C 1 D , и
должен быть на одном из двух
крайние позиции; Другими словами, ссылка CD находится в экстремуме.А
Второй экстремум звена CD приходится на = 1 .

Обратите внимание, что крайние положения бокового звена возникают одновременно.
с мертвыми точками противоположного звена.

В некоторых случаях мертвая точка может быть полезна для таких задач, как работа.
крепление (рисунок 5-11).

Изображение 5-11 Рабочее приспособление

В других случаях мертвая точка должна быть преодолена с помощью
момент инерции звеньев или при несимметричном развертывании
механизм (рисунок 5-12).

Рисунок 5-12 Преодоление мертвой точки асимметричным
развертывание (V-образный двигатель)
5.2.6 Ползунок кривошипно-шатунный механизм

Кривошипно-ползунный механизм, широко известный в
двигателей, является частным случаем кривошипно-коромысла
механизм. Обратите внимание, что если качелька 3 на рис.
5-13а очень длинный, можно заменить
блокировкой, скользящей в изогнутую прорезь или направляющую, как показано. Если длина
качельки бесконечна, направляющей и колодки больше нет
изогнутый. Скорее, они кажутся прямыми, как показано на рис. 5-13b, а соединение принимает форму
обычный кривошипно-шатунный механизм .

Рисунок 5-13 Кривошипно-скользящий механизм
5.2.7 Переворачивание шатунно-ползункового механизма

Инверсия — термин, используемый в кинематике для реверсирования или
взаимообмен формы или функции применительно к кинематическим цепям и механизмам. Для
Например, взяв другое звено в качестве фиксированного звена, ползунок-кривошип
механизм, показанный на рисунке 5-14a, можно перевернуть.
в механизмы, показанные на рис. 5-14b, c и d. Разные
примеры можно найти в применении этих механизмов.Для
Например, механизм насосного устройства на рисунке
5-15 такой же, как на рисунке 5-14b.

Изображение 5-14 Инверсии кривошипно-скользящего механизма
Рисунок 5-15 Насосное устройство

Помните, что переворот механизма не меняет
движения его звеньев относительно друг друга, но не изменяет их
абсолютные движения.

Содержание
Полное содержание

1 Физические принципы

2 Механизмы и простые машины

3 Подробнее о машинах и механизмах

4 Базовая кинематика жестких тел с ограничениями

5 планарных рычагов

5.1. Введение

5.1.1 Что такое механизмы связи?

5.1.2 Функции рычагов
5.2 Четыре рычажных механизма

5.2.1 Примеры

5.2.2 Определения

5.2.3 Классификация

5.2.4 Угол передачи

5.2.5 Мертвая точка

5.2.6 Ползунок кривошипно-шатунный механизм

5.2.7 Переворачивание шатунно-ползункового механизма
6 кулачков

7 передач

8 Прочие механизмы

Индекс

Ссылки

sfinger @ ri.cmu.edu

Кривошипно-шатунный механизм

7.2 Кривошипные механизмы ползуна

Другой механизм, который очень широко используется в конструкции машин, — это кривошипно-шатунный механизм. Он в основном используется для преобразования вращательного движения в возвратно-поступательное или наоборот. Ниже показан ее кривошипно-ползунковый механизм и приведены параметры, которые используются для определения углов и длин звеньев. Как и в механизме с четырьмя стержнями, мёртвая точка в выдвинутом и сложенном состоянии — это когда кривошип и муфта коллинеарны (звено муфты обычно называется шатун в кривошипно-ползунковых механизмах).Полное вращение кривошипа возможно, если эксцентриситет c меньше разницы между длинами шатуна и кривошипа, а длина кривошипа меньше длины шатуна (например, c3-a 2 ) и 3 > а 2 ).

Используя прямоугольные треугольники, образованные в мертвых точках:

С учетом s = se-sf = ход = ползунок расстояния перемещается между мертвыми точками.Если мы положим l = a2 / a3 и e = c / a3, ход будет определяться как:

Если эксцентриситет c (или a1) равен нулю (c = 0), кривошипно-шатунный механизм называется рядным кривошипно-ползунковый , а ход в два раза больше длины кривошипа (s = 2a 2 ). Если эксцентриситет не равен нулю (c ¹0), его обычно называют механизмом кривошипно-ползункового механизма со смещением .

Угол передачи можно определить из уравнения:

a 3 cos = a 2 sin 12 -c (1)

Максимальное отклонение угла передачи происходит, когда производная m по q 12 равна нулю.Следовательно, дифференцируя уравнение (1) по q 12 :

(2)

Максимальное или минимальное отклонение возникает, когда q 12 составляет 90 0 или 270 0 (рис. 7.19), а значение максимального или минимального угла передачи определяется как:

(3)

Если c положительно, как показано ниже, угол передачи критичен, когда q 12 = 270 0 .Если c отрицательно, то наиболее критический угол передачи равен

.

q 12 = 90 0 .

Если эксцентриситет c равен нулю, максимальное значение угла передачи равно:

(4)

В поршневых насосах соотношение коленчатого вала и шатуна составляет менее 1/4, что соответствует 14.48 0 максимальное отклонение угла передачи от 90 0 . Поскольку длина кривошипа фиксируется требуемым ходом (a 2 = s / 2), необходимо увеличить длину шатуна для улучшения углов передачи. Однако это увеличит размер механизма.

Подобно проблеме угла трансмиссии в механизмах с четырьмя стержнями, проблема угла трансмиссии в кривошипно-ползунковых механизмах может быть сформулирована следующим образом:

«Определите пропорции ползуна-кривошипа с заданным ходом s и соответствующим вращением кривошипа между мертвыми точками, f, так чтобы максимальное отклонение угла трансмиссии от 90 0 было минимальным.”

Задачу снова можно рассматривать в двух частях. Первая часть — определение кривошипных механизмов ползуна с заданным ходом и соответствующим вращением кривошипа. Вторая часть — определение одного конкретного кривошипно-ползункового механизма с оптимальным изменением угла передачи.

Для первой части задачи обратите внимание, что ход s является функцией соотношений длин звеньев, т.е. если мы удвоим длину звеньев, ход будет удвоен.Поэтому без ограничения общности пусть s = 1 (найденные таким образом длины звеньев будут умножены на длину хода, чтобы получить фактические значения).

На рисунке, где кривошипно-шатунный механизм изображен в мертвых точках, уравнения векторной петли в мертвых точках:

(5)

(6)

или комплексными числами:

(7)

(8)

Вычитая ур.(8) из ур. (7) и принимая во внимание s e -s f = s = 1:

(9)

Если положить Z = и l = a 2 / a 3 уравнение (8) можно переписать в виде:

(10)

Для полного вращения кривошипа необходимое (но не достаточное) условие l

(11)

Если l принять в качестве свободного параметра, поскольку он изменяется, вершина Z, заданная (7), будет генерировать окружность, которая является геометрическим местом всех возможных движущихся точек поворота для кривошипа, когда кривошип и муфта находятся в выдвинутом положении ( к по кругу ).Геометрическое место всех возможных фиксированных точек поворота — это другой круг (круг k 0 ), который задается как Z (1 + l) (начало координат обоих векторов — B e с действительной осью, параллельной оси ползунка) . . Любая линия, проведенная из B e , пересекает эти круги в точках A e и A 0 соответственно, давая кривошипно-ползунный механизм в выдвинутом мертвом положении. Ниже эти кружки показаны для f = 160 0 .

Эксцентриситет c может быть получен как мнимая составляющая вектора B e A 0 = B e A e + A e A 0 , который можно записать как:

(12)

или используя Z и l:

(13)

и подставив значение Z:

(14)

Теперь длины звеньев можно выразить как:

.
(15)

(16)

Уравнения (14-16) дают по отдельности бесконечный набор решений для кривошипно-ползунковых механизмов, удовлетворяющих заданному вращению кривошипа (ход = 1 единица).Можно также использовать эксцентриситет, длину кривошипа или соединительного звена в качестве свободного параметра для определения других длин звеньев.

Для геометрического решения:

Пример 4.6 :

Определите длины звеньев кривошипно-шатунного механизма ползуна с ходом s = 120 мм, соответствующим вращением кривошипа f = 160 0 и соотношением кривошипа к соединительному звену l = 0,5.

Используя единичный ход, из уравнений (14), (15) и (16) длины звеньев составляют:

a 2 = 0.47881, a 3 = 0,95762 и c = 0,23523. Для s = 120:

a 2 = 114,91 мм, a 3 = 57,46 мм и c = 28,23 мм.

Минимальный угол передачи для этого механизма составляет м мин = 41,79 0 .

Пример 4.7:

Определите длину звеньев кривошипно-ползункового механизма, имеющего такой же ход и соответствующее вращение кривошипа, как в примере 1, но вместо указанного отношения кривошипа к звену муфты эксцентриситет задается как c = 20 мм.

Для единичного хода c = 20/120 = 0,16667. Решая уравнение (10) для л , получаем:

(17)

Для c = 0,16667 l 2 = 0,325635. Подставляя в уравнения (15) и (16), получаем 2 = 0,48508 и 3 = 0,85006. Для s = 120 мм, c = 20 мм, a 2 = 58,21 мм и 3 = 102,01 мм. Минимальный угол передачи для этого механизма составляет м, мин = 39 м.94 0 . Обратите внимание, что аналогичная процедура может быть выполнена, если указана длина кривошипа или соединительного звена.

Минимальный угол передачи равен при q = p / 2:

(18)

Для полного вращения кривошипа c + a 2 3 или c 3-a 2 . В крайнем положении (c = a 3 — a 2 ) m min = 0. Используя уравнения (14), (15) и (16), это условие дает пределы f для вращения кривошипа как:

и (19)

Выражая m мин через l и f (замените уравнения 14,15 и 16 уравнениями18 и упростить)

(20)

, поскольку l является свободным параметром конструкции, необходимое условие для того, чтобы минимальный угол передачи был максимальным, составляет

Если значение l , которое делает производную равной нулю, равно l = l opt , дифференцируя уравнение (20) и устанавливая

урожая.

(21)

Где Q = l 2 opt t 2 и t = tan (f / 2).Корни уравнения (21):

(22)

Поскольку Q должно быть положительным, Q > 2 не является решением. В соответствии с Q 3 , l = 1 / t 2 , отклонение минимального угла передачи 90 0 является максимальным (cosm min = 1). Корень Q 1 дает значение l opt в диапазоне (1 / t 2 , l), и это значение удовлетворяет необходимому и достаточному условию для кривошипно-шатунного механизма с оптимальными характеристиками угла передачи.Следовательно:

(23)
это единственное оптимальное решение.

Пример 4.8:
Для хода ползуна с = 120 мм и соответствующего поворота кривошипа f = 160 0 определите кривошипно-шатунный механизм ползуна с оптимальными характеристиками передачи усилия.

Из уравнения (20). Используя уравнения (14), (15) и (16) для единичного хода, длины звеньев равны 2 = 0.465542; а 3 = 1,14896; c = 0,377378 и для хода 120 мм:

a 2 = 55,87 мм; a 3 = 137,88 мм; c = 42,81 мм

Минимальный угол передачи для механизма составляет м мин = 42,81 0 .

Результаты приведены в Таблице 2. Длина звеньев ползунка и кривошипа ( a 2 , a 3 , c) и оптимальные значения и минимальный угол передачи м мин в зависимости от кривошипа дано вращение между мертвыми точками.На диаграмме 3 приведены все возможные решения и их минимальные значения угла передачи (обратите внимание, что горизонтальная ось не в линейном масштабе).

© es

Коленчатый вал — x-engineer.org

Коленчатый вал — подвижная часть двигателя внутреннего сгорания (ДВС). Его основная функция — преобразовывать поступательное движение поршня во вращательное движение. Поршни соединены с коленчатым валом через шатуны.Коленчатый вал установлен внутри блока цилиндров.

Изображение: Кривошипный механизм двигателя (источник: Rheinmetall)

  1. Поршни
  2. Шатуны
  3. Маховик
  4. Коленчатый вал

Поршни, шатуны и коленчатый вал вместе образуют кривошипно-шатунный механизм .

Вторичная функция коленчатого вала — передача мощности другим системам двигателя:

  • фаза фаз газораспределения
  • масляный насос
  • охлаждающий (водяной) насос
  • компрессор кондиционера
  • генератор и т. Д.

Изображение: Коленчатый вал ДВС с коваными противовесами

Коленчатый вал устанавливается в блок цилиндров через его основные шейки. Шатуны закреплены на шатунных шейках коленчатого вала. На противоположных сторонах шатунных шейок коленчатый вал имеет противовесы, которые компенсируют внешние моменты, сводят к минимуму внутренние моменты и, таким образом, уменьшают амплитуды вибрации и напряжения в подшипниках. На одном конце коленчатого вала соединен маховик, а на другом конце — зубчатая передача.

Изображение: Описание коленчатого вала двигателя (источник: Rheinmetall)

  1. Сторона управления или сторона привода
  2. Противовесы
  3. Коренная шейка подшипника
  4. Шатун
  5. Сторона маховика / передача усилия
  6. Масляный канал

9 Цапфы и шатунные шейки зависят от количества цилиндров и типа двигателя (V-образный, прямой и т. д.). Как на главной шейке, так и на шатунных шейках коленчатый вал имеет отверстия для смазки (масляное отверстие), через которые масло течет при работающем двигателе.

Изображение: Коленчатый вал ДВС с привинченными болтами противовесами

Крутящий момент двигателя не является постоянным, поскольку он создается только тогда, когда каждый поршень находится в цикле расширения. За счет этого на коленчатый вал устанавливается маховик для сглаживания крутящего момента двигателя и уменьшения вибраций.

На V-образном двигателе на одинаковых шатунных шейках установлены два шатуна. Благодаря такому расположению V-образный двигатель с таким же количеством цилиндров более компактен, чем прямой двигатель.Длина двигателя V6 короче, чем длина прямого 6-цилиндрового двигателя (L6).

Изображение: Анимация кривошипного механизма ДВС (щелкните по нему)

Между коленчатым валом и блоком двигателя, на коренных шейках, установлены подшипники коленчатого вала. Их роль заключается в уменьшении трения за счет слоя антифрикционного материала, который контактирует с опорами блока цилиндров.

Коленчатый вал выпускается двух типов: литой и кованый . Противовесы можно также наделать непосредственно на коленчатый вал или прикрутить (закрепить болтами с резьбой).

Все поршни двигателя внутреннего сгорания передают свои силы на коленчатый вал. С механической точки зрения коленчатый вал должен выдерживать высокие скручивающие силы, изгибающие усилия, давления и вибрации.

Для любых вопросов или замечаний относительно этого руководства, пожалуйста, используйте форму комментариев ниже.

Не забывайте ставить лайки, делиться и подписываться!

Патент США на рабочее устройство с уравновешиванием масс на кривошипно-шатунном механизме Патент (Патент №6,352,004 от 5 марта 2002 г.)

Уровень техники

1.Область изобретения

Изобретение относится к рабочему устройству. В частности, изобретение относится к рабочим устройствам, таким как трамбовочное устройство для уплотнения грунта или молот.

2. Описание родственного искусства

Известные трамбовочные устройства этого типа сконструированы таким образом, что верхняя масса, в которой размещается двигатель и кривошипно-шатунный механизм, соединяется посредством набора пружин с рабочей массой, по существу образующей рабочую или уплотняющую пластину. Вращательное движение, создаваемое двигателем, преобразуется кривошипно-шатунным механизмом в осевое колебательное движение, которое передается через набор пружин на рабочую плиту с целью уплотнения почвы.Верхняя масса составляет примерно две трети, а ударная рабочая масса — одну треть от общей массы трамбующего устройства, в то время как соответствующие расстояния, пройденные верхней массой и рабочей массой, обратно пропорциональны друг другу. В этом устройстве перемещение верхней массы составляет порядка 25-30 мм.

Колебания верхней массы передаются через направляющий обруч человеку, направляющему рабочее устройство, и это очень неприятно, особенно при длительной работе.В этом контексте вибрации в горизонтальном или боковом направлении вызывают особую нагрузку на оператора. С другой стороны, вибрации в вертикальном направлении необходимы для эффективной работы трамбовочного устройства.

РИС. 2 показано известное трамбовочное устройство такого типа.

Согласно изобретению цель достигается за счет создания рабочего устройства, такого как утрамбовывающее устройство для уплотнения почвы или молот, которое включает в себя рабочую массу, которая может перемещаться вперед и назад линейным образом с помощью двигателя, принадлежащего верхняя масса с помощью одного кривошипно-шатунного механизма и набора пружин.Кривошипный механизм имеет кривошипный диск, который приводится в движение двигателем и который эксцентрично относительно своей оси вращения несет кривошипный штифт. Шатун кривошипа соединен с шатуном. Рабочее устройство также включает в себя противомассу, которая поддерживается кривошипно-шатунным диском и имеет центр тяжести, смещенный от центра тяжести шатунной шейки на угол, не равный 180 ° относительно оси вращения кривошипно-шатунного диска. .

На обеих сторонах направляющей 9 поршня расположен комплект пружин 11, содержащий множество пружин, каждая из которых опирается своим концом, удаленным от направляющей 9 поршня, на пружинные пластины 12, закрепленные на направляющей трубке 10.

Направляющая трубка 10 и пружинные пластины 12 относятся к рабочей или меньшей массе трамбующего устройства. Трамбовка (не показана на фиг. 2) для уплотнения почвы может быть прикреплена к нижней массе. Для предотвращения попадания влаги и грязи верхний груз и нижний груз соединены гибким сильфоном 13.

Как видно из фиг. 2, вращательное движение двигателя преобразуется в колебательное осевое движение направляющего поршня 7 кривошипно-шатунным механизмом, состоящим из кривошипного диска 3, кривошипного пальца 4 и шатуна 5.Это осевое движение передается на направляющую трубу 10 и, следовательно, на нижнюю массу посредством набора пружин 11, и может использоваться для уплотнения почвы.

Ранее известный метод гашения вибраций, воздействующих на оператора, заключался в механическом отсоединении направляющего кольца от верхней массы с помощью резиновых элементов. Однако присоединенный приводной двигатель по-прежнему подвержен высокой вибрационной нагрузке. При таком расположении можно улучшить гашение вибрации только за счет очень сложной конструкции.

Поэтому желательно с самого начала избегать возникновения колебаний верхней массы.

DE-A 19 25 870 раскрывает трамбовочное устройство, в котором приводная мощность двигателя разделяется между двумя кривошипно-шатунными механизмами, которые одновременно воздействуют на рабочую массу через наборы пружин. Противомассы закреплены на кривошипно-шатунных механизмах, которые вращаются в противоположных направлениях, центробежные силы этих противомасс уравновешивают друг друга в горизонтальном направлении, но складываются друг с другом в вертикальном направлении, тем самым уменьшая амплитуду колебаний корпуса трамбующего устройства. .Однако и с этим устройством возникают горизонтальные вибрации, вызывающие стресс для оператора.

ОБЪЕКТЫ И СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Таким образом, целью изобретения является создание рабочего устройства, в котором можно уменьшить горизонтальные колебания верхней массы прямо в момент их возникновения.

Согласно изобретению цель достигается рабочим устройством с признаками п.1 формулы изобретения.

Неожиданно было обнаружено, что балансировка кривошипно-шатунного механизма, т.е.е. обеспечение кривошипного диска, несущего шейку кривошипа, противовесом, уравновешивающим массу шейки кривошипа, не приводит к желаемому улучшению с точки зрения уменьшения горизонтальных колебаний верхней массы. Напротив, было обнаружено полной неожиданностью, что можно эффективно уменьшить горизонтальные колебания, только если вместо центра тяжести шатунной шейки используется ось вращения кривошипно-шатунного механизма и центр тяжести кривошипа. Противомасса лежит на прямой линии, а центр тяжести, таким образом, смещен на 180 ° относительно оси вращения кривошипного диска, центр тяжести противомассы расположен со смещением от центра тяжести пальца кривошипа на угол неравно 180 ° относительно оси вращения кривошипно-шатунного диска.

Хотя это означает, что кривошипно-шатунный механизм сам по себе генерирует значительные колебания, они накладываются на колебания, создаваемые следующими компонентами, в частности, направляющим поршнем и пружинными узлами, и эти колебания по существу компенсируют друг друга. Следовательно, наложение вибраций приводит к значительной стабилизации верхней массы, особенно в горизонтальном направлении.

В предпочтительном варианте осуществления масса и угловое смещение контрмасс могут быть отрегулированы таким образом, в зависимости от характеристик комплекта пружин, чтобы колебания, которые не были направлены в рабочем или вертикальном направлении рабочий аппарат минимальный.Это возможно, например, во время изготовления или сборки кривошипно-шатунного диска, при этом можно обеспечить соответствующее угловое расположение противомассы подходящей массы в зависимости от набора используемых пружин.

В особенно предпочтительном варианте противомасса выполнена за одно целое с кривошипным диском. Это упрощает сборку и производство. Соответствующая литейная форма может быть использована при отливке кривошипного диска или соответствующая матрица при ковке кривошипного диска, это зависит от метода производства.

В другом предпочтительном варианте осуществления противомасса может быть закреплена на кривошипном диске. Здесь особенно предпочтительно, если противомасса может быть закреплена в различных точках кривошипного диска относительно кривошипного пальца с точки зрения его угла вокруг оси вращения. Это имеет то преимущество, что во время сборки можно выполнять точную регулировку, что приводит к дальнейшему снижению горизонтальных колебаний верхней массы. Точно так же можно без замены пресс-форм или штампов, используемых в производстве, индивидуально подогнать кривошипно-шатунный диск и контрмассу друг к другу в зависимости от различных комплектов установленных пружин.

Оказалось целесообразным, если разница между углом смещения и 180 ° составляет не менее 10 °.

В особенно предпочтительном варианте осуществления изобретения угол между центром тяжести противомассы и центром тяжести шатунной шейки составляет около 90 ° относительно оси вращения кривошипного диска.

Также оказалось целесообразным, если масса контрмассой по существу равна массе шатунной шейки.

В другом варианте осуществления изобретения масса противомассы больше, предпочтительно, значительно больше, чем масса шатунного пальца.

Это позволяет использовать противомассу для уравновешивания движущихся масс шатуна, направляющего поршня и направляющей поршня.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Эти и другие особенности изобретения более подробно поясняются ниже со ссылкой на чертежи, на которых:

РИС. 1 показывает часть трамбовочного устройства согласно изобретению в разрезе, а

РИС. 2 показан частичный разрез известного трамбовочного устройства.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Поскольку основные компоненты трамбовочного устройства согласно изобретению, показанного на фиг. 1 соответствуют известным элементам, уже описанным со ссылкой на фиг. 2, они не будут описаны повторно. Для простоты идентичные ссылочные позиции используются для идентичных компонентов на фигурах.

Существенное отличие известного трамбующего устройства, показанного на фиг. 2, и трамбовочное устройство согласно изобретению, показанное на фиг.1 состоит в том, что в изобретении кривошипно-шатунный диск 3 несет противомассу 14. Хотя это трудно увидеть на фиг. 1, центр тяжести контрмасс 14 расположен не напротив шатунной шейки 4 относительно оси вращения 15 кривошипного диска 3, что соответствует углу смещения 180 °, а под углом, не равным 180 °. . В зависимости от варианта осуществления угол смещения должен отклоняться по меньшей мере на 10 ° от 180 °, т.е. должен быть меньше 170 ° или больше 190 °. Таким образом, центры тяжести контрмасс 14, шатун 4 кривошипа и ось 15 вращения не лежат на одной прямой.Угловое смещение в 90 ° между двумя центрами тяжести оказалось особенно целесообразным в этом контексте. В этом случае фазовый угол центробежной силы, создаваемой массой шатунной шейки 4 во время вращения кривошипного диска 3, и фазовый угол центробежной силы, создаваемой контрмассой 14, смещены на угол 90 °, причем в результате центробежные силы не компенсируют друг друга, что имело бы место при угловом смещении 180 ° и, соответственно, равной массе.Напротив, кривошипно-шатунный механизм, таким образом, создает результирующую силу, которая накладывается на другие силы, создаваемые в основном шатуном 5, направляющим поршнем 7 и комплектом пружин 11, что в целом приводит к стабилизации верхней массы.

В варианте осуществления, показанном на фиг. 1, противомас 14 выполнен за одно целое с кривошипным диском 3, например. ковкой. Шатун 4 также был соединен за одно целое с кривошипным диском 3 и обработан для получения гнезда подшипника.Для пояснения используемых терминов следует отметить, что кривошипный диск 3 состоит, по существу, из трех элементов: по существу уравновешенного несущего диска, который несет шпиндель 15 и, если требуется, снабжен внешними зубьями, шатун 4 кривошипа и противомасса 14.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *