Водородная ячейка: Инжиниринговая компания ООО Интех ГмбХ

Содержание

что мешает продвижению автомобилей на легком газе :: Свое дело :: РБК

Прощание с бензином

У водородных двигателей долгая и непростая история: еще в 1979 году BMW выпустила первый автомобиль, работающий на этом газе. Однако нефтяные кризисы 1970-х, заставившие задуматься о разработке такого автомобиля, миновали, и вплоть до 2000-х автогиганты положили идею под сукно. Все изменилось в новом веке, когда нефть снова стала дорожать, а правительства задумались о снижении выбросов в атмосферу углекислого газа. Экологичность — один из главных плюсов водородных двигателей, ведь единственный побочный продукт их работы — обычная вода. Ни углекислого газа, ни соединений свинца.

В 2007 году BMW выпустила партию из ста автомобилей Hydrogen 7, способных работать как на бензине, так и на водороде, сопроводив это событие масштабной рекламной кампанией: за рулем таких авто появлялись голливудские звезды Брэд Питт, Анджелина Джоли, Ричард Гир, Шарон Стоун. Однако сотней машин дело и ограничилось: их технические характеристики оставляли желать лучшего. Компания выбрала тупиковый путь: гибридная модель сжигала водород в камере сгорания, и газового баллона в 8 кг хватало всего на 200–250 км. А стоил автомобиль на уровне топовых моделей концерна.

Фото: Paul Sancya / AP

Другие компании извлекли из эксперимента BMW урок. Сейчас уже три фирмы серийно выпускают легковые автомобили на водородных топливных ячейках, использующих топливо более эффективно: в результате электрохимической реакции они вырабатывают энергию, которая подается на электрический двигатель. Первой работающей по такой схеме была машина Hyundai ix35 Fuel Cell, поступившая в автосалоны в начале 2013 года. Годом позже в Японии стартовали продажи Toyota Mirai, а в 2015–2016 годах на японский и американский рынки вышла Honda Clarity. Еще полтора десятка компаний в последние годы объявили о скором выпуске или по крайней мере о начале разработки таких автомобилей. Совершенствование технологий позволило существенно удешевить производство: цена Hyundai ix35 Fuel Cell составляет около $53 тыс., Toyota Mirai — $57 тыс., Honda Clarity — $59 тыс.

Тем не менее цены кажутся высокими по сравнению с обычными машинами: так, Hyundai ix35 с обычным двигателем стоит от $10 тыс. до 35 тыс. Да и сам водород пока обходится дороже бензина. Но инновационные автомобили не только чище, но и потенциально выгоднее. Согласно подсчетам бывшего главного исследователя по вопросам альтернативной энергии Лос-Аламосской национальной лаборатории (США) Стива Хенча использовать водород в качестве энергоносителя намного выгоднее, чем обычный бензин. Энергоемкость одного галлона (4,54 л) бензина и 1 кг водорода, эквивалентного ему по объему, почти одинакова: 130 против 130–140 мДж. Галлон бензина в США стоит около $2,90, 1 кг водорода обойдется дороже — в $8,6. Однако если учесть, что термодинамическая эффективность бензина составляет 20–25%, а водорода — 60% и более, получится, что топливные ячейки в 2,5–3 раза эффективнее двигателя внутреннего сгорания. А значит, на том же объеме топлива водородные автомобили смогут проехать в 2,5–3 раза дольше.

Высокая энергия

В России компании также проявляют интерес к водородным технологиям. В 2006 году «Норильский никель» приобрел контрольный пакет акций американского пионера водородной энергетики Plug Power. Однако кризис 2008–2009 годов вынудил «Норникель» продать бумаги.

В 2014 году в России появился производитель водородных топливных ячеек — AT Energy. Компании удалось найти свою нишу: она поставляет аккумуляторные системы для дронов, в том числе военных. Топливными элементами AT Energy были, например, оснащены дроны компании «АФМ-Серверс», снимавшие с воздуха Олимпиаду-2014 в Сочи. «Оснащение дронов водородными элементами дает большой выигрыш по длительности полета, кроме того, они перестают зависеть от температуры воздуха», — говорит основатель компании Данила Шапошников.

В июне 2017 года AT Energy подписала стратегическое соглашение с АО «Линде Газ Рус», дочерней компанией производителя промышленных газов Linde Group. Партнеры будут поставлять владельцам беспилотных аппаратов баллоны с водородом производства Linde. Это поможет решить важнейшую проблему водородной энергетики для беспилотников — заправочной инфраструктуры.

Легок на помине

Ажиотаж по поводу самого легкого в природе газа, стартовавший в начале 2000-х, был подхвачен политиками. В 2004 году губернатор Калифорнии Арнольд Шварценеггер рисовал картины «водородных шоссе», которыми будет опоясан его штат всего через шесть лет. Ничего такого, конечно, не произошло. «Автомобильная отрасль консервативна: все новые технологии дорогие, требуют оптимизации моделей по массе и габаритам, испытаний на ресурс», — говорит гендиректор AT Energy Данила Шапошников.

Сказалась и экономическая ситуация. «В глобальном контексте замедление развития водородной энергетики связано с тем, что выбор технологий снижения выбросов в энергетике, транспорте, горнодобывающей промышленности и ЖКХ определяется экономической выгодой, — говорит советник по возобновляемой энергии в MoJo Energy Говард Рамсден, в 2000-х принимавший участие в разработке законодательства Европейского союза в области электроэнергетики. — Если финансовые механизмы стимулирования выбора низкоуглеродных технологий не являются существенными для стимулирования потребителя, то он либо не будет менять своих привычек, либо будет делать это очень вяло. Водородные технологии оказались слишком дороги для производителей в условиях двух глобальных экономических кризисов, где война за покупателя была жесткой».

Проблемы вызваны не только экономической конъюнктурой. Первому элементу таблицы Менделеева то и дело достается от глав технологических компаний. Так, владелец Tesla Илон Маск неоднократно называл топливные ячейки «ошеломляюще тупой технологией», противопоставляя их электрическим аккумуляторам, на которые сделала ставку его компания. Основная претензия заключается в том, что в качестве средства хранения энергии ячейки уступают аккумуляторам, поскольку преобразование химической энергии в электрическую внутри топливного элемента ведет к неизбежным потерям.

Илон Маск

(Фото: Marcio Jose Sanchez / AP)

Другие критики отмечают, что водородные автомобили по умолчанию небезопасны. Водород невидим, легко воспламеняется и не имеет запаха, а значит о его утечке водитель не догадается вплоть до взрыва. Правда, и Toyota и Honda специально отмечают, что в их моделях водород хранится в герметичных и ударопрочных контейнерах из углеволокна. И все-таки никакое углеволокно не выдержит сильного удара при ДТП.

И даже подсчеты экономических выгод водорода могут быть обманчивы. «Главная проблема — высокая стоимость производства самих топливных элементов, так как водородные батареи содержат платину, один из самых дорогих металлов в мире, — напоминает Кристиан Цбинден. — Многие заблуждаются, считая водородную энергетику спасением от глобального изменения климата. На самом деле энергия из водорода — это плацебо, поскольку при производстве подобных батарей используется непропорционально большое количество электроэнергии. Поэтому «зелеными» данные технологии назвать нельзя». Самый распространенный в наши дни процесс получения водорода — паровой риформинг метана. Он требует использования углеводородов. Правда, теоретически его можно заменить электролизом воды, энергию для которого будут давать, например, солнечные батареи.

Кроме того, под водородные двигатели нужно строить специальные сети заправок. «Вопрос не столько в разработках производителей двигателей, сколько в подготовке и развитии необходимой инфраструктуры, — считает Никита Игумнов, финансовый эксперт, ранее работавший в инвестпроектах Газпромбанка, в органах управления и контроля МОЭСК и «Мосэнергосбыта». — При реализации данного направления возникнет ряд проблем, требующих решения. Среди них — высокая стоимость производства, хранения и транспортировки топлива, а также необходимость масштабного развития необходимой инфраструктуры: заправки, терминалы хранения, производственные мощности. Все эти вопросы требуют масштабных инвестиций».

Нишевой элемент

И все-таки будет ошибочным считать водородную энергетику тупиковым направлением. «Например, она давно применяется в ракетостроении, но СМИ редко об этом пишут», — отмечает Шапошников. Пока автомобили на топливных элементах делают первые шаги, их меньшие братья — автопогрузчики уже вовсю переходят на самый легкий газ. В июле Walmart приобрела 55 млн акций одного из пионеров водородной энергетики — компании Plug Power, объявив о планах оснастить 30 своих центров дистрибуции водородными автозаправками, где смогут заряжаться погрузчики компании (сейчас такими заправками оснащены 22 американских магазина Walmart). В апреле этого года Amazon.com купила более 50 млн акций Plug Power, параллельно начав оснащать водородными заправками свои склады.

Компании-конкуренты считают, что водород поможет их центрам быть более эффективными. «Складская техника — это ниша, в которой водородные топливные ячейки уже прочно закрепились, — говорит Данила Шапошников. — Электрические аккумуляторы погрузчиков быстро садятся и подолгу заряжаются. Возникают большие паузы в работе. Кроме того, батареи имеют короткий срок службы. А техника на водороде надежна, неприхотлива и, кроме того, экологична — такие погрузчики могут работать в закрытых помещениях».

То, что силовые установки, работающие на водороде, практически бесшумны, делает их привлекательными для производства военной техники. Уже сейчас такими установками оснащают, например, подводные лодки. Водород служит и для нужд домохозяйств: энергетические станции мощностью от 1 до 5 кВт могут вырабатывать электроэнергию в режиме когенерации, попутно давая тепло для системы отопления и нагрева воды.

В Японии такие автономные системы получили широкое признание после аварии на «Фукусиме», когда ядерная энергетика стала восприниматься как нечто страшное. Агентство по природным ресурсам и энергетике Японии рассматривает развитие водородной промышленности как один из приоритетов, рассчитывая за три года довести число используемых домохозяйствами водородных электрогенераторов до 1,4 млн. Кроме того, правительство мотивирует промышленные компании использовать водород в качестве источника электроэнергии на заводах и фабриках. А организаторы летних Олимпийских игр 2020 года в Токио собираются превратить их в демонстрацию возможностей водородных двигателей.

Среди ниш, где водород находит себе применение уже сегодня, — стационарное резервное питание. «Топливные ячейки требуют мало обслуживания: поставил — забыл, — говорит Шапошников. — Когда напряжение в сети падает до нуля, они включаются. Небольшой баллон с газом, установленный, например, на сотовой вышке, даст ей энергии на сутки, пока ремонтная бригада устраняет проблему. Другая ниша — автономное энергоснабжение удаленных пунктов: можно раз в год наполнять газгольдер, обеспечивая электричеством и теплом небольшой поселок полярников где-нибудь в Арктике». Это решение подойдет для многих труднодоступных уголков страны.

Водородная энергетика будет развиваться даже при отсутствии прорыва в автомобильной отрасли, говорят эксперты. Согласно прогнозу Markets&Markets объем мирового производства водорода, который сейчас составляет $115 млрд, к 2022 году вырастет до $154 млрд. Но и в автомобильной промышленности этот элемент рано списывать со счетов. Да, водород высокого давления требует строительства сотен заправочных станций. Но есть более дешевая альтернатива, которую сейчас разрабатывает сразу несколько компаний, в частности один из лидеров по производству топливных ячеек — канадская Ballard Power, делающая пилотный проект для китайского Министерства транспорта. Жидкий химический состав можно будет заливать в обычные бензохранилища, которыми оснащены АЗС, и заправлять им машину как бензином. В специальном реакторе из жидкости будет выделяться газообразный водород, поступающий в топливную ячейку. Голубая мечта Шварценеггера не столь уж и несбыточна.

Ученые нашли способ продлить срок службы водородных топливных элементов

https://ria.ru/20201210/tpu-1588428198.html

Ученые нашли способ продлить срок службы водородных топливных элементов

Ученые нашли способ продлить срок службы водородных топливных элементов

Ученые Томского политехнического университета (ТПУ) разрабатывают твердооксидные топливные элементы для установок, вырабатывающих электроэнергию из… РИА Новости, 10.12.2020

2020-12-10T03:00

2020-12-10T03:00

2020-12-10T03:00

наука

университетская наука

навигатор абитуриента

российская академия наук

томский политехнический университет

томск

/html/head/meta[@name=’og:title’]/@content

/html/head/meta[@name=’og:description’]/@content

https://cdn22.img.ria.ru/images/07e4/0c/09/1588421675_0:308:3001:1996_1920x0_80_0_0_978e2add504e70b3dd7efaa46490a8d6.jpg

МОСКВА, 10 дек — РИА Ноовсти. Ученые Томского политехнического университета (ТПУ) разрабатывают твердооксидные топливные элементы для установок, вырабатывающих электроэнергию из углеводородного топлива или водорода. Вместе с учеными из Института сильноточной электроники СО РАН (ИСЭ СО РАН) они предложили новый метод получения одного из ключевых элементов топливной ячейки — электролита. Он позволит увеличить срок службы топливных элементов, сообщили в пресс-службе вуза.По словам ученых, они впервые в России предложили использовать метод магнетронного распыления для создания электролита. С помощью этого метода они получили очень тонкий слой электролита, толщиной не более 5 микрон. Это позволило снизить температуру, при которой происходит выработка электроэнергии, на 100°С, что поможет увеличить срок службы топливных элементов.Твердооксидные топливные элементы можно считать «сердцем» водородной энергоустановки. Они превращают энергию топлива в электрическую энергию и частично в тепловую без его сжигания. Твердооксидные топливные элементы могут работать с углеводородным топливом, например, с метаном и бутаном, а также с водородом.Топливный элемент представляет собой пластину из трех слоев: катода, анода и электролита между ними. В энергетической установке на них с разных сторон подается, водород и воздух. Ионы кислорода и молекулы водорода встречаются и между ними происходит химическая реакция, в результате которой генерируется тепло и электроэнергия. Побочный продукт реакций — чистая вода.У твердооксидных топливных элементов есть два серьезных преимущества, отметил доцент Научно-образовательного центра Б.П. Вейнберга ТПУ Андрей Соловьев.»Во-первых, у них электрический коэффициент полезного действия достигает 60%, в то время как у тепловых, газотурбинных или атомных электростанций – 40%. Во-вторых, они экологичные, поэтому на них сегодня обращают внимание во всем мире. Однако они до сих пор широко не распространены, и ученые ищут методы и способы получения еще более эффективных, надежных и дешевых топливных элементов. В Томске давно успешно развивается направление нанесения тонкопленочных покрытий методом магнетронного распыления, поэтому мы решили попробовать наносить электролит именно этим методом. И получили толщину слоя в пять микрон – один из лучших результатов среди других методов нанесения электролитов», — рассказал он.Электролит в топливном элементе играет роль барьера между молекулами водорода и кислорода, которые могут взорваться при прямом смешении. Слой электролита пропускает только нужные для безопасной реакции ионы кислорода. Сам электролит представляет собой тонкую пленку из диоксида циркония, стабилизированного иттрием, и оксида церия, допированного гадолинием. Наносят электролит на керамический анод.В Томском политехе для нанесения таких покрытий была создана собственная вакуумная установка магнетронного распыления.»Обычные твердооксидные топливные элементы работают при температуре около 850°С. Наши же за счет тонкого электролита – при температуре в 750°С. Снижение рабочей температуры увеличивает срок службы батареи топливных элементов, так как при меньшей температуре снижается скорость деградации материалов. Также тонкий электролит позволяет повысить плотность мощности. Это позволяет получать больше энергии при том же размере топливного элемента. Чтобы выяснить, насколько можно увеличить срок службы элементов, необходимо провести долгосрочные ресурсные испытания», — отметил Смолянский.По инициативе ТПУ был создан консорциум «Технологическая водородная долина». Его участники будут вести совместные исследования и разрабатывать технологии для получения водорода, его транспортировки, безопасного хранения и использования в энергетике. В консорциум вошли Институт катализа СО РАН, Институт проблем химической физики РАН, Институт нефтехимического синтеза РАН, Самарский государственный технический университет и Сахалинский государственный университет.

https://ria.ru/20201028/mifi-1581726016.html

https://ria.ru/20201013/tpu-1579430871.html

томск

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2020

РИА Новости

[email protected] ru

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdn25.img.ria.ru/images/07e4/0c/09/1588421675_97:0:2758:1996_1920x0_80_0_0_043ff35223a48f63ffc766a38bf949f0.jpg

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

университетская наука, навигатор абитуриента, российская академия наук, томский политехнический университет, томск

МОСКВА, 10 дек — РИА Ноовсти. Ученые Томского политехнического университета (ТПУ) разрабатывают твердооксидные топливные элементы для установок, вырабатывающих электроэнергию из углеводородного топлива или водорода. Вместе с учеными из Института сильноточной электроники СО РАН (ИСЭ СО РАН) они предложили новый метод получения одного из ключевых элементов топливной ячейки — электролита. Он позволит увеличить срок службы топливных элементов, сообщили в пресс-службе вуза.

По словам ученых, они впервые в России предложили использовать метод магнетронного распыления для создания электролита. С помощью этого метода они получили очень тонкий слой электролита, толщиной не более 5 микрон. Это позволило снизить температуру, при которой происходит выработка электроэнергии, на 100°С, что поможет увеличить срок службы топливных элементов.

Твердооксидные топливные элементы можно считать «сердцем» водородной энергоустановки. Они превращают энергию топлива в электрическую энергию и частично в тепловую без его сжигания. Твердооксидные топливные элементы могут работать с углеводородным топливом, например, с метаном и бутаном, а также с водородом.

28 октября 2020, 09:00НаукаВ России придумали новый тип накопителей водородного топлива

Топливный элемент представляет собой пластину из трех слоев: катода, анода и электролита между ними. В энергетической установке на них с разных сторон подается, водород и воздух. Ионы кислорода и молекулы водорода встречаются и между ними происходит химическая реакция, в результате которой генерируется тепло и электроэнергия. Побочный продукт реакций — чистая вода.

У твердооксидных топливных элементов есть два серьезных преимущества, отметил доцент Научно-образовательного центра Б.П. Вейнберга ТПУ Андрей Соловьев.

«Во-первых, у них электрический коэффициент полезного действия достигает 60%, в то время как у тепловых, газотурбинных или атомных электростанций – 40%. Во-вторых, они экологичные, поэтому на них сегодня обращают внимание во всем мире. Однако они до сих пор широко не распространены, и ученые ищут методы и способы получения еще более эффективных, надежных и дешевых топливных элементов. В Томске давно успешно развивается направление нанесения тонкопленочных покрытий методом магнетронного распыления, поэтому мы решили попробовать наносить электролит именно этим методом. И получили толщину слоя в пять микрон – один из лучших результатов среди других методов нанесения электролитов», — рассказал он.

Электролит в топливном элементе играет роль барьера между молекулами водорода и кислорода, которые могут взорваться при прямом смешении. Слой электролита пропускает только нужные для безопасной реакции ионы кислорода. Сам электролит представляет собой тонкую пленку из диоксида циркония, стабилизированного иттрием, и оксида церия, допированного гадолинием. Наносят электролит на керамический анод.

«Суть метода магнетронного распыления заключается в выбивании (распылении) атомов вещества из поверхностных слоев мишени ионами рабочего газа, обычно аргона, и последующем их осаждении на подложке», — рассказал инженер Исследовательской школы физики высокоэнергетических процессов ТПУ Егор Смолянский.

В Томском политехе для нанесения таких покрытий была создана собственная вакуумная установка магнетронного распыления.

«Обычные твердооксидные топливные элементы работают при температуре около 850°С. Наши же за счет тонкого электролита – при температуре в 750°С. Снижение рабочей температуры увеличивает срок службы батареи топливных элементов, так как при меньшей температуре снижается скорость деградации материалов. Также тонкий электролит позволяет повысить плотность мощности. Это позволяет получать больше энергии при том же размере топливного элемента. Чтобы выяснить, насколько можно увеличить срок службы элементов, необходимо провести долгосрочные ресурсные испытания», — отметил Смолянский.

13 октября 2020, 03:00НаукаВодородное топливо станет дешевле благодаря российским ученым

По инициативе ТПУ был создан консорциум «Технологическая водородная долина». Его участники будут вести совместные исследования и разрабатывать технологии для получения водорода, его транспортировки, безопасного хранения и использования в энергетике. В консорциум вошли Институт катализа СО РАН, Институт проблем химической физики РАН, Институт нефтехимического синтеза РАН, Самарский государственный технический университет и Сахалинский государственный университет.

Революционный пакет водородных топливных ячеек

Уменьшение размеров силовой установки FCX Clarity, ее высокая удельная мощность вкупе с хорошей аэродинамикой кузова привели к снижению энергопотерь в виде образования избыточной тепловой энергии. Инженеры Honda решили объединить радиатор пакета топливных ячеек, радиатор системы охлаждения двигателя и радиатор климатической системы в единый узел с единственным вентилятором. Испытания показали эффективность такого решения. В итоге под капотом автомобиля было отвоевано целых 40% полезного объема.

Сам себе заправка

Один из главных аспектов использования водородных автомобилей — снижение вредных выбросов в атмосферу. Водородный автомобиль намного эффективнее бензинового и электрического аналогов. Топливная ячейка обладает КПД примерно 80%, но полученную энергию нужно еще превратить в кинетическую энергию вращения колес автомобиля. Электрический мотор и трансмиссия имеют такой же КПД — 80%. Таким образом, водородный автомобиль обладает теоретическим КПД 64%. Honda заявляет, что эффективность модели FCX Clarity равна 60%. Для сравнения, бензиновый автомобиль превращает в механическую работу всего 20−30% энергии, содержащейся в топливе. Электромобиль способен использовать чуть более 70% энергии аккумулятора.

Основное препятствие на пути массового применения водорода в качестве топлива для автомобилей — инфраструктура. Ситуация напоминает классическую дилемму: что было раньше — курица или яйцо? Продавать сверхдорогие водородные автомобили даже на приемлемых условиях лизинга, не имея развитой сети заправок, невозможно. Строить сеть заправок без водородного автопарка — рискованно. А вдруг сотни миллионов так никогда и не окупятся? С чего же начинать?

Компания Honda предлагает своим клиентам экспериментальную домашнюю электростанцию Home Energy Station, превращающую природный газ в тепло, электричество и водород для заправки автомобиля. С 2003 года одна такая экспериментальная установка функционирует в калифорнийском городке Торранс. В настоящее время создано уже четвертое поколение Home Energy Station, значительно более компактное и удобное, чем первые три. Домашняя электростанция полностью обеспечивает крупный индивидуальный дом электроэнергией и теплом, а при необходимости генерирует из природного газа водород для заправки автомобиля. Японцы намерены усиленно продвигать Home Energy Station на рынке, создавая первые точки роста для превращения водородных автомобилей из фантастики в реальность. И все же, если принять во внимание сложности, связанные с промышленным производством водорода, можно с уверенностью сказать: путь водородного автомобиля в массы будет нелегким.

Военные испытают перезаряжаемую водородную ячейку

Перезаряжаемая водородная топливная ячейка

Фотография: dvidshub.net

Американский авиастроительный концерн Boeing передал ВМС США перезаряжаемую водородную топливную ячейку, которую военные начнут в ближайшее время испытывать. Как сообщает Defense Aerospace, этот элемент питания способен не только вырабатывать электроэнергию при необходимости, но и аккумулировать водород при отсутствии нагрузки.

Разработка топливной ячейки велась на протяжении последних 16 месяцев в рамках программы министерства обороны США по переводу военных баз на альтернативные источники энергии. Разработанная Boeing ячейка, в отличие от других водородных топливных ячеек, способна эффективно работать не только в режиме выработки электроэнергии при реакции водорода и кислорода, но и эффективно накапливать водород.

Ячейка построена по твердооксидной технологии. Выработка электричества в ней происходит, как в обычной водородной топливной ячейке. Накопление же водорода производится за счет электролиза воды в присутствии твердого керамического электролита, проницаемого для ионов кислорода. Электролиз воды производится за счет электричества от солнечных батарей или ветрогенераторов.

Перезаряжаемая водородная ячейка в настоящее время установлена в Порт-Вайними в Калифорнии в Центре инженерно-строительного, технического и боевого экспедиционного командования ВМС США. Ячейка уже встроена в электрическую подсеть базы. Когда именно американские военные планируют начать повсеместное использование таких ячеек, не уточняется.

В 2012 году Пентагон представил «дорожную карту» повышения энергоэффективности американской армии и снижения зависимости от углеводородного сырья. В рамках этой программы, в частности, к 2030 году планируется оснастить Армию США 25 установками типа Net Zero. Они сводят к минимуму разницу в количестве производимых и потребляемых энергоресурсов.

Василий Сычёв

Водородный суперкар Hyperion XP-1 дебютирует в августе — ДРАЙВ

Размеры и мощность новичка пока не раскрыты. Зато фирма призывает к более широкому распространению водородной технологии, что сделает сам водород дешевле. Вырабатывать его предполагается за счёт энергии из возобновляемых источников.

Серийной легковушкой на водородных топливных элементах сейчас никого не удивишь — Toyota Mirai и Honda Clarity с Hyundai Nexo не дадут соврать. Но если заходит речь о спортивных моделях, то здесь для энтузиастов ещё поле непаханое. На этот экзотический сектор рынка нацелилась калифорнийская компания Hyperion Motors, отделение стартапа Hyperion, который помимо автомобильного крыла располагает дочками Hyperion Aerospace и Hyperion Energy, занятыми аэрокосмической и энергетическими сферами. Все три ветви Гипериона объединяет любовь к водороду. Его использует и суперкар Hyperion XP-1.

На сайте компании висит громкое объявление «технологии NASA», но вряд ли в суперкаре установлены те же самые блоки топливных элементов, что применялись в энергосистеме шаттла, скорее речь об общих подходах. И вообще в космосе топливные ячейки начали использовать раньше, чем в массовом автомобилестроении.

Умельцы из города Ориндж, ведомые генеральным директором и одним из основателей фирмы Анджело Кафантарисом, обещают принести на дорогу космические технологии, разработанные в NASA. Однако никакими техническими данными своей модели не делятся. Ясно лишь, что автомобиль будет направлять водород в блок топливных ячеек, названный Hypercell, тот выработает ток для электромоторов. Выхлоп, понятно, тут нулевой (просто водяной пар).

Основанная в 2011 году фирма начала неспешную тизерную кампанию своего проекта ещё в 2015-м, но только в 2020-м автомобиль добрался до премьеры. Мы высветлили один из прошлых тизеров.

В одном из постов в соцсетях компания поясняет, что аккумуляторы, конечно, хороши, но пройдёт немало времени, прежде чем от них можно будет получать действительно большой пробег. В общем, поставив баллоны с водородом и топливные элементы, можно добиться приличных параметров, сэкономить массу. И что выгоднее по стоимости системы — топливные ячейки или очень крупный аккумулятор, вопрос дискуссионный. Вдобавок время заправки баллонов против времени зарядки тяговой батареи (считанные минуты против получаса-часа, если не двух) — это гигантское преимущество водородной технологии. Во что все обещания выльются на практике, увидим в августе нынешнего года, когда модель будет рассекречена.

Apple готовит iPhone и Macbook, которые будут работать неделями от одной зарядки


, Текст: Эльяс Касми


Apple хочет перевести все свои мобильные устройства с литиевых аккумуляторов на водородные топливные ячейки, за счет которых их автономность возрастет в несколько раз. У нее есть два патента, описывающих эту технологию, но она до сих пор не придумала, как сделать топливные элементы достаточно компактными.

Неделями без подзарядки

Компания Apple придумала, как радикально увеличить время автономной работы своих смартфонов iPhone и других мобильных устройств. Она предложила использовать вместо обычных литиевых аккумуляторов топливные элементы на водороде, о чем говорится в ее патенте с номерами 9917340 и 8980491 под названием «Портативное вычислительное устройство для внешнего управления топливными элементами» (Portable computing device for external fuel cell control). В документе отмечено, что на одном заряде такой ячейки гаджет сможет работать несколько недель.

Топливный элемент — это электрохимическое устройство, преобразующее исходные вещества (топливо) в электрический ток. Особенность элемента заключается в том, что топливо, на котором он работает, можно загружать извне порциями, по мере его расходования. В водородном элементе ток возникает в ходе химической реакции между водородом и кислородом из воздуха.

Свой новый патент Apple подала в американское патентное бюро (USPTO) еще 28 июня 2018 г. С того момента компания выпустила два поколения своих смартфонов (iPhone Xs и iPhone 11), и в каждом использовались литиевые батареи.

В списке авторов документа числятся шесть американских ученых, у каждого из которых уже есть несколько патентов, так или иначе связанных с топливными элементами. Это в первую очередь Брэдли Спейр (Bradley Spare), Виджей Айер (Vijay Iyer) и Джин Ли (Jean Lee), которым приписывают авторство патента на «Систему топливных элементов, соединенную с портативным вычислительным устройством» (Fuel cell system coupled to a portable computing device, номер 8980491 от 3 сентября 2015 г.). Он тоже принадлежит Apple и, как сообщал CNews, тоже описывает внешний элемент питания для портативной электроники, получающий электрическую энергию из водорода и его соединений.

О подзарядке iPhone можно будет не вспоминать днями напролет

Оставшиеся три автора нового документа Apple – это Грегори Тайс (Gregory Tice), Майкл Хиллман (Michael Hillman) и Дэвид Саймон (David Simon).

Преимущества и недостатки водородных элементов питания

Топливные элементы на водороде действительно способны существенно дольше держать заряд в сравнении со своими литиевыми «родственниками». Помимо этого, они гораздо более экологичны, как при производстве, так и при использовании и утилизации. Побочный продукт от преобразования водорода в электричество – обычная вода.

Изображение из нового патента Apple. На нем зачем-то упомянут старый разъем MagSafe для MacBook

Водородные топливные ячейки используются в ряде современных электромобилей, например, в Toyota Mirai. Массовыми эти транспортные средства назвать пока нельзя ввиду полного отсутствия глобальной инфрастуктуры – к примеру, нет специализированных заправочных станций.

Кроме того, водород как газ отличается низкой плотностью – для хранения при комнатной температуре обычном давлении объема водорода, способного выделить столько же энергии, сколько и бак бензина, то такая емкость будет иметь в 800 раз больший объем в сравнении с бензобаком.

Зачем на самом деле Apple понадобился водород

В своем патенте Apple тоже указывает на трудности с хранением больших запасов водорода в небольших ячейках, и она работает над этой системой. Но ее первостепенная цель – не сделать iPhone и MacBook более экологичными и долгоиграющими.

Как Kia применяет искусственный интеллект

Искусственный интеллект

В описании патента она рассматривает и политические проблемы, которые и побудили ее к началу исследований в этом направлении. Документ гласит, что использование водорода как альтернативного источника энергии позволит США (Apple – американская компания) в значительной степени снизить уровень своей зависимости от государств Ближнего Востока.

Отказ от литий-ионных батарей в iPhone напрямую связан с геополитикой

Именно эти страны в настоящее время являются главными экспортерами лития – основного сырья для производства литий-ионных и литий-полимерных батарей, использующихся в самой разной технике – ноутбуках, планшетах, смартфонах, портативных аккумуляторах и т. д.

«Непрекращающаяся зависимость нашей страны от ископаемого топлива вынудила наше правительство поддерживать сложные политические и военные отношения с нестабильными правительствами на Ближнем Востоке, а также подвергло наши береговые линии и наших граждан опасностям, связанным с морским бурением», – говорится в патенте Apple.

Почему до сих пор нет смартфонов на водороде

В обоих своих патентах, описывающих использование водорода для работы мобильных устройств, Apple указывает, что разработать достаточно компактный топливный элемент, который можно было бы поместить непосредственно в само портативное электронное устройство – это достаточно сложная задача на сегодняшний день. Она требует значительных ресурсов и человеко-часов. Еще одна сложность – сделать такой топливный элемент недорогим и сопоставимым по себестоимости и итоговой цене с литиевыми аккумуляторами.

Также в патентах нет информации о том, насколько конкретно более эффективны водородные аккумуляторы в плане автономности работы устройств на фоне литиевых. Apple также не уточняет, как пользователю придется утилизировать продукт переработки водорода – воду. Сроки появления первых топливных элементов для гаджетов, даже примерные, Apple не назначает.

Поезд на водороде — европейский технологический прорыв с оговорками | Экономика в Германии и мире: новости и аналитика | DW

Внешне Coradia iLint ничем не отличается от обычных поездов, курсирующих по всей Германии на небольших расстояниях — разве что своим небесно-голубым цветом, символизирующим экологичность. Внутри новый поезд вообще неотличим от своих собратьев. А вот с технической точки зрения Coradia iLint — это прорыв, так как это первый в мире поезд на водородных топливных ячейках. Причем, это не прототип: после первого торжественного рейса в воскресенье, 16 июля, он уже запланирован для повседневной рейсовой работы между городами Бремерфёрде, Куксхафен, Бремерхафен и Букстехуде в федеральной земле Нижняя Саксония.

На смену дизелю

До сих пор этот участок железнодорожного сообщения не был электрофицирован, что не является в Германии такой уж редкостью, и движение осуществлялось на дизельных поездах. Их постепенно и должны заменить собой электрички Coradia iLint. Они представляют собой небольшие поезда с двумя электромоторами, электричество для которых поступает не из воздушной контактной сети, а из источника энергии в самом поезде. На крыше Coradia iLint установлена цистерна с водородом и топливный элемент (или ячейка). В нем водород соединяется с кислородом, в результате чего возникает электрический ток.

Выбросов вредных веществ в атмосферу, как у дизельных двигателей, при этом не возникает — в качестве результата электрохимической реакции в топливном элементе в окружающую среду выделяется только вода. И еще преимущество: поезд движется практически бесшумно.

Максимальная скорость Coradia iLint — 140 км в час. Дальность поездки на одной заправке — от 800 до 1000 километров, а сама заправка длится около 15 минут.

Недостатки водородных топливных элементов

Эксперты называют топливные элементы на водороде идеальной технологией получения энергии в будущем. Однако минусы у нее тоже есть. Например, водород в цистерне на крыше поезда получен не естественным путем, а в результате процесса электролиза воды, на который потребовалось потратить много электроэнергии, полученной вовсе не всегда экологически чистым способом.

Интерьер Coradia iLint

В ответ на это производитель Coradia iLint — французский концерн Alstom — уже пообещал построить предприятие по производству водорода с помощью электричества с ветряных электростанций.

Другой проблемой является фактическое отсутствие «водородной инфраструктуры» — то есть водородных заправок. Здесь тоже пока речь о только будущем. Например, в немецкой федеральной земле Гессен, где сейчас тоже обсуждают старт пригородных поездов на водородном топливе, запланировали строительство водородной заправочной станции. Точные сроки пока неясны.

Европейское решение для водородного топлива

Что же касается начавшего курсировать на севере Германии Coradia iLint, то водород ему в первое время будут доставлять из Нидерландов. Кстати, и само производство «чудо-поезда» тоже вполне общеевропейское.

Так, изначально технология поездов на водородном топливе разрабатывалась немецкой компанией LHB, которая позже была поглощена французским концерном Alstom. А сейчас Alstom вместе с немецкой компаний Siemens объединяют усилия и к началу 2019 года планируют создать совместное предприятие в области производства железнодорожного транспорта. На этом фоне неудивительно, что новый поезд Coradia iLint компания Alstom был произведен на заводе в немецком городе Зальцгиттер.

К 2021 году земля Нижняя Саксония закупит еще 14 таких поездов, что обойдется ей в примерно 81 миллион евро. «Отличная инвестиция», — гордо заявил министр экономики и транспорта Нижней Саксонии Бернд Альтхусман (Bernd Althusmann). Интерес к поездам проявили также еще 3 федеральных земли в Германии, есть несколько потенциальных покупателей из других европейских стран и Северной Америки.

Смотрите также:

  • За что природа поблагодарит вас

    Выключайте кран

    На время чистки зубов кран можно выключить! Просто налейте воду в стаканчик. Согласно исследованию Ольденбургского университета, только во время чистки зубов жители Германии расходуют лишних 12 литров чистой питьевой воды.

  • За что природа поблагодарит вас

    Принимайте душ

    Тот, кто принимает ванну, расходует около 140 литров воды. Принимая душ, мы тратим 20 литров воды за минуту. Немецкая экологическая организация BUND подсчитала: если семья из четырех человек откажется от принятия ванн и будет пользоваться исключительно душем, то в год она сэкономит на электроэнергии и воде более 300 евро.

  • За что природа поблагодарит вас

    Устройте сквозняк

    Вместо того, чтобы держать окна полуоткрытыми, лучше каждые два-три часа как следует открыть окно и устроить сквозняк. При этом хватит уже нескольких минут, чтобы полностью освежить воздух в помещении.

  • За что природа поблагодарит вас

    Откажитесь от батареек

    Экологи советуют отказаться от устройств, работающих на батарейках. Для выпуска одноразовых батареек используется намного больше электроэнергии, чем мы получаем от самих батареек. Электроэнергия из батареек в 300 раз дороже, чем из розеток.

  • За что природа поблагодарит вас

    Выключайте электроприборы

    Выключать электрические приборы надо полностью, а не переводить их на «режим ожидания». В этом режиме приборы продолжают использовать электроэнергию.

  • За что природа поблагодарит вас

    Закрывайте посуду крышками

    Экологи советуют при варке использовать кастрюли с крышками — количество используемой электроэнергии снижается до 65 процентов. Кроме того, кастрюли или сковородки должны соответствовать размерам нагреваемых дисков электроплит.

  • За что природа поблагодарит вас

    Кипятите воду в чайниках

    Если нам нужно вскипятить воду, то лучше использовать электрочайник, а не кастрюлю на плите. Если бы все немцы каждый день кипятили воду в чайнике, а не на плите, то экономили бы до 40 евро в год каждый.

  • За что природа поблагодарит вас

    Сушите волосы без фена

    Электроприбор в ванной комнате, который потребляет особенно много электроэнергии, — это фен. Летом сушить волосы лучше на воздухе или на солнце!

  • За что природа поблагодарит вас

    Обойдитесь без «кофе с собой»

    Стоит помнить о том, что одноразовая посуда становится настоящей проблемой для экологии. Лучше захватить с собой свою чашку или небольшой термос. Чем меньше мусора, тем лучше!

  • За что природа поблагодарит вас

    Пластиковые пакеты вредят экологии

    Согласно данным Немецкого ведомства по охране окружающей среды, жители Германии используют в среднем до 76 пластиковых пакетов в год. Лучше всего ходить в магазины с матерчатыми сумками, рюкзаками или корзинками для покупок. Во имя сохранения нашей с вами окружающей среды!

    Автор: Анабела Линке, Виктор Вайц

 

топливных элементов | Министерство энергетики

Топливный элемент использует химическую энергию водорода или другого топлива для экологически чистого и эффективного производства электроэнергии. Если водород является топливом, электричество, вода и тепло — единственные продукты. Топливные элементы уникальны с точки зрения разнообразия их потенциальных применений; они могут обеспечивать электроэнергией системы величиной с коммунальная электростанция и такие маленькие, как портативный компьютер.

Why Study Fuel Cells

Топливные элементы могут использоваться в широком диапазоне приложений, включая транспортировку, погрузочно-разгрузочные работы, стационарные, портативные и аварийные резервные источники питания.Топливные элементы обладают рядом преимуществ по сравнению с традиционными технологиями сжигания, которые в настоящее время используются на многих электростанциях и легковых автомобилях. Топливные элементы могут работать с более высоким КПД, чем двигатели внутреннего сгорания, и могут преобразовывать химическую энергию топлива в электрическую с КПД до 60%. Топливные элементы имеют более низкие выбросы, чем двигатели внутреннего сгорания. Водородные топливные элементы выделяют только воду, поэтому отсутствуют выбросы углекислого газа и загрязнители воздуха, которые создают смог и вызывают проблемы со здоровьем во время работы.Кроме того, топливные элементы работают тихо, поскольку в них меньше движущихся частей.

Как работают топливные элементы

Топливные элементы работают как батареи, но они не разряжаются и не нуждаются в подзарядке. Пока есть топливо, они производят электроэнергию и тепло. Топливный элемент состоит из двух электродов — отрицательного электрода (или анода) и положительного электрода (или катода), расположенных вокруг электролита. На анод подается топливо, например водород, а на катод — воздух. В водородном топливном элементе катализатор на аноде разделяет молекулы водорода на протоны и электроны, которые идут к катоду разными путями.Электроны проходят через внешнюю цепь, создавая электрический ток. Протоны мигрируют через электролит к катоду, где они соединяются с кислородом и электронами, образуя воду и тепло. Подробнее о:

Просмотрите анимацию топливных элементов в офисе Fuel Cell Technologies Office, чтобы узнать, как работает топливный элемент.

Цели исследований и разработок

Министерство энергетики США (DOE) тесно сотрудничает со своими национальными лабораториями, университетами и отраслевыми партнерами для преодоления критических технических препятствий на пути разработки топливных элементов.Стоимость, производительность и долговечность по-прежнему являются ключевыми проблемами в отрасли топливных элементов. Просмотрите ссылки по теме, которые предоставляют подробную информацию о деятельности по топливным элементам, финансируемой Министерством энергетики.

  • Стоимость — Платина представляет собой один из самых дорогостоящих компонентов топливного элемента, поэтому большая часть исследований и разработок сосредоточена на подходах, которые увеличат активность и использование существующих катализаторов из металлов платиновой группы (МПГ) и сплавов МПГ. как катализатор, не связанный с МПГ, подходит для долгосрочного применения.
  • Рабочие характеристики — Для улучшения характеристик топливных элементов НИОКР сосредоточены на разработке ионообменных мембранных электролитов с повышенной эффективностью и долговечностью при меньших затратах; улучшение мембранных электродных сборок (МЭБ) за счет интеграции современных компонентов МЭБ; разработка транспортных моделей и экспериментов in-situ и ex-situ для получения данных для проверки моделей; выявление механизмов деградации и разработка подходов к смягчению их последствий; и поддержание основных видов деятельности по компонентам, подсистемам и системам, специально предназначенным для стационарных и переносных энергетических приложений.
  • Долговечность — Ключевым фактором производительности является долговечность с точки зрения срока службы системы топливных элементов, который соответствует ожиданиям приложений. Цели Министерства энергетики для стационарных и транспортных топливных элементов составляют 40 000 часов и 5 000 часов соответственно при реальных условиях эксплуатации. В наиболее требовательных приложениях реалистичные рабочие условия включают примеси в топливе и воздухе, пуск и останов, замораживание и оттаивание, а также циклы влажности и нагрузки, которые приводят к нагрузкам на химическую и механическую стабильность материалов и компонентов системы топливных элементов.НИОКР сосредоточены на понимании механизмов деградации топливных элементов и разработке материалов и стратегий, которые смягчат их.

Технические цели

Загрузите раздел «Топливные элементы» Многолетнего плана исследований, разработок и демонстрации Управления технологий топливных элементов для получения полной информации о технических целях или просмотрите отдельные таблицы целевых показателей для:

Части топливного элемента

Топливные элементы с полимерно-электролитной мембраной (PEM) в настоящее время являются основным направлением исследований для транспортных средств с топливными элементами.Топливные элементы PEM состоят из нескольких слоев разных материалов. Основные части топливного элемента PEM описаны ниже.

Сердцем топливного элемента PEM является узел мембранного электрода (MEA), который включает мембрану, слои катализатора и газодиффузионные слои (GDL).

Аппаратные компоненты, используемые для включения MEA в топливный элемент, включают прокладки, которые обеспечивают уплотнение вокруг MEA для предотвращения утечки газов, и биполярные пластины, которые используются для сборки отдельных топливных элементов PEM в батарею топливных элементов и обеспечения каналов для газообразного топлива и воздуха.

Узел мембранного электрода

Мембрана, слои катализатора (анод и катод) и диффузионная среда вместе образуют узел мембранного электрода (MEA) топливного элемента PEM.

Мембрана с полимерным электролитом

Мембрана с полимерным электролитом или PEM (также называемая протонообменной мембраной) — специально обработанный материал, напоминающий обычную кухонную пластиковую пленку — проводит только положительно заряженные ионы и блокирует электроны. PEM — это ключ к технологии топливных элементов; он должен пропускать только необходимые ионы между анодом и катодом.Другие вещества, проходящие через электролит, могут нарушить химическую реакцию. Для транспортных средств мембрана очень тонкая — в некоторых случаях менее 20 микрон.

Слои катализатора

Слой катализатора добавляется с обеих сторон мембраны — анодный слой с одной стороны и катодный слой с другой. Обычные слои катализатора включают частицы платины нанометрового размера, диспергированные на углеродном носителе с большой площадью поверхности. Этот платиновый катализатор на носителе смешивают с ионопроводящим полимером (иономером) и помещают между мембраной и GDL.На анодной стороне платиновый катализатор позволяет молекулам водорода расщепляться на протоны и электроны. На катодной стороне платиновый катализатор обеспечивает восстановление кислорода за счет реакции с протонами, генерируемыми анодом, с образованием воды. Иономер, смешанный со слоями катализатора, позволяет протонам проходить через эти слои.

Слои диффузии газа

GDL расположены вне слоев катализатора и облегчают перенос реагентов в слой катализатора, а также удаление образующейся воды.Каждый GDL обычно состоит из листа копировальной бумаги, в которой углеродные волокна частично покрыты политетрафторэтиленом (ПТФЭ). Газы быстро диффундируют через поры в GDL. Эти поры остаются открытыми благодаря гидрофобному ПТФЭ, который предотвращает чрезмерное накопление воды. Во многих случаях внутренняя поверхность GDL покрыта тонким слоем углерода с большой площадью поверхности, смешанного с PTFE, который называется микропористым слоем. Микропористый слой может помочь отрегулировать баланс между удерживанием воды (необходимо для поддержания проводимости мембраны) и высвобождением воды (необходимо, чтобы поры оставались открытыми, чтобы водород и кислород могли диффундировать в электроды).

Аппаратное обеспечение

MEA — это часть топливного элемента, в которой вырабатывается энергия, но для обеспечения эффективной работы MEA требуются аппаратные компоненты.

Биполярные пластины

Каждый индивидуальный MEA вырабатывает менее 1 В в типичных рабочих условиях, но для большинства приложений требуются более высокие напряжения. Таким образом, несколько MEA обычно подключаются последовательно путем наложения их друг на друга для обеспечения приемлемого выходного напряжения. Каждая ячейка в стопке зажата между двумя биполярными пластинами, чтобы отделить ее от соседних ячеек.Эти пластины, которые могут быть изготовлены из металла, углерода или композитов, обеспечивают электрическую проводимость между ячейками, а также обеспечивают физическую прочность пакета. Поверхности пластин обычно содержат «поле потока», которое представляет собой набор каналов, обработанных на станке или штампованных в пластине, чтобы газы могли проходить через МЭБ. Дополнительные каналы внутри каждой пластины могут использоваться для циркуляции жидкого хладагента.

Прокладки

Каждый MEA в батарее топливных элементов зажат между двумя биполярными пластинами, но по краям MEA необходимо добавить прокладки для создания газонепроницаемого уплотнения.Эти прокладки обычно изготавливаются из эластичного полимера.

Маск называет водородные топливные элементы «глупыми», но технологии могут угрожать Tesla

Клиент заправляет автомобиль водородом на заправочной станции TrueZero в Милл-Вэлли, Калифорния. Штат тратит более 2,5 миллиарда долларов из фондов чистой энергии для ускорения продаж автомобилей на водороде и аккумуляторных батареях. Это включает 900 миллионов долларов, выделенных на завершение строительства 200 водородных станций и 250 000 зарядных станций к 2025 году.

Bloomberg | Bloomberg | Getty Images

Tesla и ее конкуренты на рынке электромобилей с батарейным питанием доминируют в спорах о том, кто будет контролировать будущее автомобилей, но в Соединенных Штатах есть еще один вид экологически чистых транспортных технологий, основанный на самых распространенных технологиях. ресурс во вселенной.

Электромобили на топливных элементах (FCEV) объединяют водород, хранящийся в резервуаре, с кислородом из воздуха для производства электроэнергии, с водяным паром в качестве побочного продукта. В отличие от более распространенных электромобилей с батарейным питанием, автомобили на топливных элементах не нужно подключать к электросети, а все текущие модели превышают 300 миль при полном баке. Они наполняются форсункой почти так же быстро, как традиционные газовые и дизельные автомобили. Хотя сами автомобили на топливных элементах испускают водяной пар только из выхлопных труб, Союз обеспокоенных ученых отмечает, что производство водорода может привести к загрязнению.Хотя возобновляемые источники водорода, такие как сельскохозяйственные угодья и свалки, увеличиваются, большая часть водорода, используемого в качестве топлива, поступает из традиционной добычи природного газа. Тем не менее, отдача по-прежнему меньше, чем у бензиновых аналогов.

Водородная энергия присутствует на рынке в течение многих лет, но ее объем чрезвычайно ограничен. В настоящее время в Калифорнии 39 общественных водородных заправочных станций (еще 25 находятся в стадии разработки), а также пара на Гавайях. Теперь у Восточного побережья появляется собственная инфраструктура.Несколько станций уже работают, и еще больше в Нью-Йорке, Нью-Джерси, Массачусетсе, Коннектикуте и Род-Айленде.

Коммерческий успех, проблемы потребителей

Водород более широко используется на коммерческом рынке. Более 23000 вилочных погрузчиков на топливных элементах работают на складах и в распределительных центрах США в более чем 40 штатах, в том числе на предприятиях Amazon и Walmart. Десятки автобусов на топливных элементах используются или планируются в Огайо, Мичигане, Иллинойсе и Массачусетсе, а также в Калифорнии.

Количество заправочных станций водородом растет во всем мире. Toyota и Honda объединяются с правительством Квебека для создания водородной инфраструктуры в Монреале в этом году, и даже богатая нефтью Саудовская Аравия получает свою первую станцию.

Toyota, второй по величине автопроизводитель в мире, является крупнейшим игроком на потребительском рынке США автомобилей на водородных топливных элементах. Его Mirai — семейный автомобиль на водородных топливных элементах — нашел 5000 покупателей с тех пор, как он был представлен осенью 2015 года.Расс Кобле, представитель группы по охране окружающей среды и передовых технологий Toyota, сказал, что компания ожидает увеличения продаж по мере открытия новых заправочных станций.

«Toyota уже давно утверждает, что технология водородных топливных элементов может быть решением с нулевым уровнем выбросов для широкого спектра типов транспортных средств», — сказал он.

Toyota заявляет, что масштабируемость технологии водородных топливных элементов также привела к появлению двух приложений для Калифорнийских технико-экономических обоснований в другой области, представляющей интерес для Tesla: грузовики с полуприцепами.

Полуприцеп Toyota Motor, работающий на водородных топливных элементах, представлен на AutoMobility LA в преддверии автосалона в Лос-Анджелесе

Патрик Т. Фэллон | Bloomberg | Getty Images

Honda также сделала большой выбор в пользу водорода. По словам представителя Honda Натали Кумаратне, в настоящее время на дорогах США находится около 1100 автомобилей Honda Clarity Fuel Cell. Honda предлагает в аренду только Clarity Fuel Cell в Калифорнии — она ​​предлагает в аренду или продажу гибридные версии автомобиля, работающие от аккумуляторной батареи.Из 20 174 автомобилей Clarity, проданных или сданных в аренду в 2018 году, 624 были вариантами топливных элементов, 948 — электрическими батареями и 18 602 — гибридными.

Honda и Toyota объединились с дочерней компанией Shell Oil для строительства новых водородных заправочных станций в Калифорнии. По словам Кумаратне, два объекта уже построены, а пять находятся в стадии строительства. Компания выступает за строительство станций на северо-востоке США, некоторые из которых находятся в стадии разработки. «Партнерство с другими производителями водородных топливных элементов и влиятельными лицами отрасли имеет смысл.«У всех нас есть своя кожа», — сказала она.

Hyundai, которая в настоящее время имеет 220 автомобилей на водородных топливных элементах на дорогах США, также видит рост продаж. «Мы ожидаем, что Северо-Восток станет следующим крупным регионом. рост водородной инфраструктуры «, — сказал Дерек Джойс, представитель корейского производителя продукции и группы передовых силовых агрегатов. Компания только что представила Nexo в США. Агентство по охране окружающей среды оценивает запас хода среднеразмерного кроссовера до 380 миль, что больше, чем у любого электромобиля с батарейным питанием. рынок.

По состоянию на 1 февраля в США было продано и сдано в аренду чуть более 6000 электромобилей на топливных элементах, вдвое больше Японии, следующего по величине рынка.

Маск о водородных «дурацких элементах»

Соучредитель и генеральный директор Tesla Илон Маск назвал водородные топливные элементы «невероятно глупыми», и это не единственное, что он сказал о технологии. Он назвал их «дурацкими ячейками», «грудой мусора» и сказал акционерам Tesla на ежегодном собрании несколько лет назад, что «успех просто невозможен.«

Маск нашел неожиданный источник поддержки в 2017 году, когда Йошиказу Танака, главный инженер, отвечающий за Mirai, сказал Рейтер:« Илон Маск прав — лучше заряжать электромобиль напрямую от розетки ». Но Toyota исполнительный директор добавил, что водород является жизнеспособной альтернативой бензину. Председатель Toyota Такеши Учиямада сказал Reuters на том же токийском автосалоне в 2017 году: «Мы действительно не видим враждебных отношений с нулевой суммой между электромобилями (электромобиль с батарейным питанием). и водородный автомобиль.Мы вовсе не собираемся отказываться от технологии водородных электрических топливных элементов ».

Автомобильная промышленность в целом не разделяет взглядов Маска на будущее, основанное на принципе« батарея или разрушение ». В 2017 году был проведен опрос 1000 руководителей автомобильной отрасли. KPMG пришли к выводу, что водородные топливные элементы имеют лучшее долгосрочное будущее, чем электромобили, и будут представлять собой «настоящий прорыв» (78 процентов), причем руководители автомобилестроительных компаний назвали короткое время дозаправки, всего несколько минут, главным преимуществом. 62% респондентов заявили KPMG, что проблемы с инфраструктурой приведут к краху рынка электромобилей с батарейным питанием.

В Калифорнии продолжаются дебаты по поводу того, окупили ли субсидии, предложенные штатом для запуска рынка топливных элементов, инвестиции, судя по ограниченному использованию заправочных станций и отсутствию прибыли. Калифорния привержена усилиям, начатым при бывшем губернаторе Джерри Брауне, по финансированию инициатив в области возобновляемых источников энергии, которые включали план транспортных средств с нулевым выбросом в размере 900 миллионов долларов и финансирование инфраструктуры зарядки электромобилей, в том числе 200 водородных станций к 2025 году.

Мы могли видеть системы водородных топливных элементов, которые стоят в четыре раза меньше литий-ионных батарей, а также обеспечивают гораздо больший радиус действия.

Дэвид Антонелли

Кафедра физической химии в Ланкастерском университете

GM еще не выпустила автомобиль на топливных элементах для потребительского рынка, но у нее есть совместное предприятие с Honda по производству стеков топливных элементов на заводе в Мичигане. началось в 2013 году и расширилось в 2017 году, когда обе компании заявили, что завод в Мичигане, где производятся топливные трубы, может производить автомобили, начиная с 2020 года.

Ford экспериментировал с вариантами топливных элементов своих автомобилей Focus и Fusion, а также Edge кроссовер, но таких машин в продажу не предлагает.

«Учитывая постоянно растущую долю возобновляемых источников энергии, водородные топливные элементы могут сыграть важную роль в будущем», — сказал представитель Ford. «С точки зрения массового вывода на рынок, однако, аккумулятор в настоящее время занимает более выгодное положение по сравнению с топливным элементом — не в последнюю очередь из-за ситуации со стоимостью и доступной инфраструктурой. Наша работа будет по-прежнему сосредоточена на электрификации, поскольку мы будем следить за развитием производства водорода. В настоящее время у нас нет планов предлагать автомобили на водородных топливных элементах ».

Fiat Chrysler не продает автомобиль на топливных элементах в США.S., но в течение 15 лет он поддерживал исследования под руководством профессора Дэвида Антонелли, кафедры физической химии в Ланкастерском университете в Великобритании, которые могли снизить затраты на технологию. Его команда работает с материалом, который позволяет сделать топливные баки меньше, дешевле и более энергоемкими, чем существующие технологии водородного топлива, а также транспортные средства с батарейным питанием.

«Стоимость производства нашего материала настолько низка, а плотность энергии, которую он может хранить, намного выше, чем у литий-ионной батареи, что мы можем видеть системы водородных топливных элементов, которые стоят в четыре раза меньше, чем литий-ионные батареи. а также обеспечивает гораздо больший радиус действия «, — сказал Антонелли.Лицензия на технологию предоставлена ​​коммерческой компании Kubagen, созданной Антонелли.

Модель автомобиля и цены на заправку остаются серьезными проблемами.

Безопасность вызывает беспокойство, так как водород легковоспламеняем, но бензин и литий-ионные аккумуляторы тоже. Транспортировка водорода для использования на заправочных станциях создает дополнительные риски для безопасности — станции используют датчики для отслеживания утечек. В Калифорнии не сообщалось о серьезных инцидентах, а промышленный сектор перевозил водород на протяжении десятилетий.

По данным Национальной ассоциации противопожарной защиты, транспортные средства с альтернативным топливом, категория, которая включает как водородные топливные элементы, так и электрические батареи, не более опасны, чем традиционные двигатели внутреннего сгорания. Статистика NFPA показывает, что примерно каждые 3 минуты в США возникает пожар из-за двигателя внутреннего сгорания.

Однако самым большим препятствием может быть цена.

Средняя цена на водородное топливо в Калифорнии составляет около 16 долларов за кг — бензин продается за галлоны (объем), а водород за килограмм (вес).Для сравнения: 1 галлон бензина имеет примерно такое же количество энергии, как 1 кг водорода. Большинство электромобилей на топливных элементах несут от 5 до 6 кг водорода, но проходят вдвое больше, чем современный автомобиль с двигателем внутреннего сгорания с эквивалентным газом в баке, что дает эквивалент бензина на галлон от 5 до 6 долларов.

Автомобили на водородных топливных элементах в настоящее время имеют средний запас хода от 312 до 380 миль, согласно EPA. Заправка из порожнего топлива будет стоить около 80 долларов (большинство водителей не позволяют баку полностью опуститься перед заправкой, поэтому в конечном итоге заправка обходится от 55 до 65 долларов).Эта стоимость в настоящее время оплачивается автопроизводителями, которые предоставляют арендаторам предоплаченные карты на три года заправки топливом на сумму до 15 000 долларов. В Калифорнии, где самые высокие в стране цены на бензин, заправка обычного автомобиля большим бензобаком может стоить 40 долларов и более.

Kelley Blue Book оценивает годовые затраты на топливо для Toyota Mirai, Honda Clarity Fuel Cell и Hyundai Nexo в 4495 долларов, что в три-четыре раза превышает стоимость бензиновых альтернатив.

«Мы понимаем, что автопроизводители не могут продолжать платить за топливо, и мы видим линию прямой видимости, чтобы добраться туда, но это объемная игра, и нам нужно достичь критической массы», — сказал Шейн Стивенс, директор по разработке сотрудник компании FirstElement Fuel, которая управляет 19 из 39 заправочных станций водородом в Калифорнии и разрабатывает 12 из 25 дополнительных станций для штата.Ближайшая цель его компании — 10 долларов за килограмм, что равняется примерно 4 долларам за галлон газа. «Это хорошее краткосрочное приемлемое число, которое можно достичь в ближайшие три-пять лет и избавить людей от топлива, субсидируемого автопроизводителями», — сказал Стивенс.

Самая большая проблема: автомобили остаются дорогими. Например, Nexo — самый дорогой Hyundai, продаваемый в США, со стартовой ценой в 59 345 долларов (стартовые цены на Santa Fe сопоставимого размера начинаются с 24 250 долларов). Модели топливных элементов Toyota Mirai и Honda Clarity имеют аналогичную рекомендованную производителем розничную цену в диапазоне 59 000 долларов.Эти покупки автомобилей имеют право на государственные скидки — в Калифорнии доступна налоговая скидка в размере 5000 долларов США.

Лизинг был популярным выбором потребителей для электромобилей на топливных элементах и ​​аккумуляторных батареях, потому что эта технология является новой, и первые пользователи не хотят быть привязанными к текущей модели в течение длительного времени по мере развития технологий и повышения эффективности.

Как и в случае с любой новой технологией, стоимость топливных элементов должна снизиться, если рынок будет расти и достигнет эффекта масштаба в производстве и инфраструктуре.«У Honda есть долгосрочные обязательства по производству водорода, но вы не можете продавать автомобили без инфраструктуры», — сказал Кумаратне.

Стивенс сказал, что если рынок в Калифорнии достигнет «нескольких сотен тысяч автомобилей», он сможет быть конкурентоспособным по цене с бензином. Это большой скачок по сравнению с 6000 проданными на данный момент автомобилями, но большинство новых автомобильных рынков начинаются с ограниченного производства. Toyota заявила, что планирует увеличить производство с 3000 единиц Mirai в год до 30 000 автомобилей к 2021 году. «Это десятикратное увеличение.»

» Несколько сотен тысяч автомобилей в Калифорнии не так уж и далеко. И это всего лишь Toyota, — сказал Стивенс. — Речь идет не о субсидировании всего роста инфраструктуры, а просто о том, чтобы помочь нам преодолеть препятствие, а это уже не за горами. Если мы дойдем до нескольких сотен тысяч автомобилей, мы действительно сможем отказаться от государственных субсидий и стать самоокупаемыми ».

Поправка: водород — самый богатый ресурс во вселенной. Из-за ошибки редактирования была установлена ​​более ранняя версия эта статья искажает этот факт.

Водородные и топливные элементы | Мир возобновляемых источников энергии

НАСА использует водородное топливо для запуска космических кораблей. Предоставлено: НАСА

.

Водород — простейший элемент. Атом водорода состоит только из одного протона и одного электрона. Это также самый многочисленный элемент во Вселенной. Несмотря на свою простоту и изобилие, водород не встречается на Земле в естественном виде в виде газа — он всегда сочетается с другими элементами.Например, вода представляет собой комбинацию водорода и кислорода (H 2 O).

Водород также содержится во многих органических соединениях, особенно в углеводородах , которые составляют многие из наших топлив, таких как бензин, природный газ, метанол и пропан. Водород можно отделить от углеводородов с помощью тепла — процесс, известный как реформинг . В настоящее время большая часть водорода производится таким способом из природного газа. Электрический ток также можно использовать для разделения воды на кислород и водород.Этот процесс известен как электролиз . Некоторые водоросли и бактерии, используя солнечный свет в качестве источника энергии, даже выделяют водород при определенных условиях.

Водород очень энергоемкий, но двигатель, работающий на чистом водороде, почти не загрязняет окружающую среду. НАСА использует жидкий водород с 1970-х годов для вывода на орбиту космических кораблей и других ракет. Водородные топливные элементы питают электрические системы шаттла, производя чистый побочный продукт — чистую воду, которую пьет экипаж.

Водородные топливные элементы

Топливный элемент объединяет водород и кислород для производства электричества, тепла и воды. Топливные элементы часто сравнивают с батареями. Оба преобразуют энергию, полученную в результате химической реакции, в полезную электроэнергию. Однако топливный элемент будет вырабатывать электричество, пока есть топливо (водород), и никогда не теряет свой заряд.

Топливные элементы — перспективная технология для использования в качестве источника тепла и электричества для зданий, а также в качестве источника электроэнергии для электродвигателей, приводящих в движение транспортные средства.Топливные элементы лучше всего работают на чистом водороде. Но такие виды топлива, как природный газ, метанол или даже бензин, можно преобразовать для производства водорода, необходимого для топливных элементов. Некоторые топливные элементы даже можно заправлять непосредственно метанолом без использования риформинга.

В будущем водород может присоединиться к электричеству в качестве важного энергоносителя. Энергоноситель перемещается и доставляет энергию потребителям в пригодной для использования форме. Возобновляемые источники энергии, такие как солнце и ветер, не могут производить энергию постоянно.Но они могут, например, производить электроэнергию и водород, которые можно хранить до тех пор, пока они не понадобятся. Водород также можно транспортировать (например, электричество) в места, где он необходим.

Дополнительные ресурсы по водородной энергии

Содержание водорода для этого раздела частично предоставлено Национальной лабораторией возобновляемых источников энергии и Министерством энергетики.

Использование водорода — Управление энергетической информации США (EIA)

Использование водорода

Почти весь водород, потребляемый в Соединенных Штатах, используется промышленностью для очистки нефти, обработки металлов, производства удобрений и обработки пищевых продуктов.Нефтеперерабатывающие заводы США используют водород для снижения содержания серы в топливе.

Ракетное топливо — основное использование водорода для получения энергии

Национальное управление по аэронавтике и исследованию космического пространства (НАСА) начало использовать жидкий водород в 1950-х годах в качестве ракетного топлива, и НАСА было одним из первых, кто использовал водородные топливные элементы для питания электрических систем космических кораблей.

Космическая ракета НАСА

Источник: Национальное управление по аэронавтике и исследованию космического пространства (НАСА) (общественное достояние)

Источник: адаптировано из Национального проекта энергетического образования (общественное достояние)

Водородные топливные элементы производят электроэнергию

Водородные топливные элементы производят электричество путем объединения атомов водорода и кислорода.Водород реагирует с кислородом через электрохимический элемент, аналогичный аккумулятору, с образованием электричества, воды и небольшого количества тепла.

Для широкого спектра применений доступно множество различных типов топливных элементов. Маленькие топливные элементы могут приводить в действие портативные компьютеры и даже сотовые телефоны, а также в военных приложениях. Большие топливные элементы могут обеспечивать электроэнергией для резервного или аварийного питания в зданиях и снабжать электричеством места, которые не подключены к электрическим сетям.

По состоянию на конец октября 2020 года на 108 объектах в Соединенных Штатах имелся около 161 действующий топливный элемент, общая электрическая мощность которых составляла около 250 мегаватт (МВт). Самым крупным из них является Энергетический центр Red Lion в Делавэре, общая мощность которого составляет около 25 МВт, в котором для работы топливных элементов используется водород, полученный из природного газа.

Использование водорода в транспортных средствах

Интерес к водороду как транспортному топливу основан на его потенциале для внутреннего производства и использования в топливных элементах для высокоэффективных электромобилей с нулевым уровнем выбросов.Топливный элемент в два-три раза эффективнее двигателя внутреннего сгорания, работающего на бензине. Использование водорода в транспортных средствах является одним из основных направлений исследований и разработок топливных элементов.

В Соединенных Штатах несколько производителей автомобилей начали выпускать малотоннажные электромобили на водородных топливных элементах в некоторых регионах, таких как Южная и Северная Калифорния, где есть доступ к водородным заправочным станциям. Испытательные автомобили также доступны в ограниченном количестве для избранных организаций, имеющих доступ к водородным заправочным станциям.

Большинство транспортных средств, работающих на водороде, — это автомобили и транзитные автобусы, у которых есть электродвигатель, работающий от водородного топливного элемента. Некоторые из этих автомобилей сжигают водород напрямую. Высокая стоимость топливных элементов и ограниченная доступность водородных заправочных станций ограничили количество автомобилей, работающих на водороде.

Гибридный автомобиль на водородных топливных элементах

Источник: Wikimedia Commons

Проблема заправки

Производство автомобилей на водородном топливе ограничено, потому что люди не будут покупать эти автомобили, если водородные заправочные станции труднодоступны, а компании не будут строить заправочные станции, если у них нет клиентов с автомобилями, работающими на водороде.В Соединенных Штатах около 46 заправочных станций для водородных транспортных средств, и почти все они находятся в Калифорнии. Программа чистого транспорта штата Калифорния включает помощь в создании общедоступных заправочных станций для водородных транспортных средств по всей Калифорнии для продвижения потребительского рынка автомобилей с топливными элементами с нулевым уровнем выбросов.

Последнее обновление: 7 января 2021 г.

Автомобили на водородных топливных элементах: что вам нужно знать

Помимо тонкой сети заправочных станций, существует еще одна причина низкого спроса на автомобили на водородных топливных элементах: их относительно дорого покупать.Несколько моделей автомобилей на топливных элементах, которые уже доступны на рынке, стоят около 80 000 долларов США за автомобиль среднего или высшего класса. Это почти вдвое больше, чем у сопоставимых полностью электрических или гибридных автомобилей.

Есть ряд причин, по которым автомобили на водородных топливных элементах все еще дороги. В дополнение к небольшим объемам, что означает, что производство еще предстоит индустриализировать, существует также вопрос о потребности в драгоценном металле, платине, которая действует как катализатор при выработке электроэнергии.Количество платины, необходимой для топливных элементов транспортных средств, уже значительно уменьшено. «Общая цель — снизить цены на автомобили с водородным двигателем до уровня, аналогичного цене других электромобилей», — объясняет Рюкер.

Другой причиной высокой закупочной цены является то, что автомобили на водородных топливных элементах, как правило, довольно большие, поскольку водородный бак (и) занимает много места. С другой стороны, привод для электромобиля с чисто аккумуляторным приводом также подходит для небольших автомобилей.Вот почему классические электромобили в настоящее время можно найти во всех классах автомобилей.

В дополнение к стоимости покупки, эксплуатация затраты также играют важную роль в экономической эффективности и принятии двигательной технологии. В автомобилях с водородными топливными элементами эти затраты не в последнюю очередь зависят от цены на топливо. В настоящее время 1 фунт (0,45 кг) водорода стоит около 14 долларов США в США по сравнению с 4,80 доллара США в Германии (это цена, о которой договорились партнеры h3 Mobility).FCEV может проехать около 28 миль (45 км) на 1 фунте (0,45 кг) водорода.

Таким образом, стоимость километра пробега водородных автомобилей в настоящее время почти вдвое выше, чем у автомобилей с батарейным питанием, заряжаемых дома. Rücker ожидает, что эти эксплуатационные расходы сойдутся: «Если спрос на водород возрастет, цена может упасть примерно до 2,50 доллара США за фунт (5,60 доллара США за кг) к 2030 году».

Что эффективнее? Водород или аккумулятор?

Но есть и эмоциональные проблемы: боязнь дальнего боя и быстрая зарядка.Авторы исследования убеждены, что обе эти проблемы будут решены и больше не будут препятствовать распространению электромобилей в фазе тяги с 2023/2025 года. Дальность действия увеличится, больше точек зарядки, в том числе точек быстрой зарядки, сведут к минимуму страх оказаться в затруднительном положении. Наконец, обсуждается фактическая экономия CO 2 : поскольку электричество, используемое для производства электронных автомобилей, все еще «грязное», по крайней мере, не везде зеленое, у электронного автомобиля сегодня есть сравнительно большой «рюкзак», когда он производится.Исследования показывают, что он экономит больше CO 2 , чем двигатель внутреннего сгорания, после более 100 000 километров пробега (производство и эксплуатация). Согласно исследованию, это тоже изменится в пользу электромобилей в ближайшие несколько лет: больше зеленой электроэнергии при производстве электромобилей и аккумуляторов постепенно уменьшит размер этого «первоначального рюкзака», а электромобиль позволит сэкономить больше. CO 2 , быстрее. Компания Horváth & Partners также столкнулась с критикой многих сторонников водорода за то, что следует принимать во внимание так называемое темное затишье при работе от батарей.Темное затишье означает время, когда электричество не может вырабатываться из-за темноты и / или спокойствия. Для этого к соответствующему дополнительному требованию была добавлена ​​первичная потребность батареи в энергии.

Остается самая интересная часть исследования: какая энергия имеет лучшую эффективность и является наиболее рентабельной для вождения электронных автомобилей? Аккумуляторная или водородная работа?
В электромобилях с батарейным питанием только восемь процентов энергии теряется во время транспортировки, прежде чем электричество накапливается в батареях транспортных средств.Когда электрическая энергия, используемая для привода электродвигателя, преобразуется, теряется еще 18 процентов. Это дает электромобилю с батарейным питанием уровень эффективности от 70 до 80 процентов, в зависимости от модели.

В случае электромобиля, работающего на водороде, потери значительно больше: 45 процентов энергии уже теряется при производстве водорода путем электролиза. Из оставшихся 55 процентов первоначальной энергии еще 55 процентов теряется при преобразовании водорода в электричество в автомобиле.Это означает, что водородный электромобиль достигает КПД только от 25 до 35 процентов, в зависимости от модели. Для полноты: при сжигании альтернативных видов топлива эффективность еще хуже: всего 10-20 процентов от общей эффективности.

«Помимо очень реального потенциала зеленого водорода, в настоящее время существует опасная шумиха», — предупреждают эксперты консалтинговой компании Boston Consulting Group (BCG) в новом исследовании, цитируемом Handelsblatt. Исследование Horváth & / Partners также пришло к таким же выводам.

Авторы исследования пришли к выводу, что вместо того, чтобы тратить миллиарды на создание водородного общества, инвестиции в эту многообещающую технологию должны быть сосредоточены на приложениях, в которых они также имеют экономический смысл. «Мы считаем, что есть большой потенциал, если зеленый водород будет продвигаться в приложениях, в которых он действительно может стать популярным в долгосрочной перспективе. Прежде всего, в промышленности, но также в сфере тяжелых грузов, воздушных и морских перевозок », — говорит Фрэнк Клозе, соавтор исследования.

Вывод очевиден: электромобили на топливных элементах имеют много преимуществ (запас хода, быстрая заправка, отсутствие тяжелой батареи на борту), но один решающий недостаток: они сравнительно неэффективны — как с точки зрения эффективности, так и с точки зрения стоимости.«Ни одна устойчивая экономика не может позволить себе использовать вдвое больше возобновляемой энергии для управления автомобилями на топливных элементах вместо автомобилей с батарейным питанием», — говорит Дитмар Фоггенрайтер, руководитель исследования. Водород можно было использовать только в нишах, в грузовиках и автобусах и на большие расстояния. Вес аккумулятора, запас хода и время заправки играют здесь решающую роль. Она резко возрастает с увеличением емкости, что делает аккумуляторы неинтересными даже для грузовиков.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *